Does Maintaining A Healthier Diet Help Us Fight Against COVID-19?
Authors: Sofia Chalkias, Ryan Abeysinghe
Introduction
Coronavirus (COVID-19) is an infectious respiratory disease caused by the SARS-CoV-2 virus. The first case of COVID-19 was reported on December 1, 2019. COVID-19 began at the beginning of December 2019 near Wuhan City, Hubei Province, China. The cause of the pandemic was due to a new coronavirus, later called SARS-CoV-2. SARS-CoV-2 is of animal origin, with genetic similarity to bat coronaviruses, thought to result from a bat virome (bat-borne virus) [1] . In the past, outbreaks of some infectious diseases have been attributed to viruses from birds, pigs, and other animals that are lethal to humans.
Most people infected with the virus develop mild to moderate respiratory illness and recover without the need for special treatment. However, some people become severely ill and need to see a doctor immediately, or within a few days of contracting symptoms. The Elderly and individuals with underlying disorders such as cardiovascular disease, diabetes, chronic respiratory illness, and cancer are more likely to contract serious illnesses, so they are at high-risk of acquire coronavirus [2]. Anyone is able to become infected with COVID-19, become seriously ill, or die. Although, the rate of contraction in younger individuals tend to persist much less.
The best way to prevent and delay transmission of Coronavirus is to be well informed about how the virus is spreading. The virus is able to be spread by small particles of liquid as an infected person coughs, sneezes, talks, or breathes through their mouth or nose. To protect yourself and others from infection, it is advised to stay at least six feet away from others, wear a properly-fitting mask, wash your hands frequently, use hand sanitizer or alcohol-based rubbing. Receiving a vaccine is highly recommended to fight against being infected with the Coronavirus.
With the rise of the COVID-19 pandemic, there is much uncertainty and misinformation being spread. In this final tutorial, we decided to address the importance of diet and maintaining a healthy lifestyle to lessen the risk of contracting COVID-19. Utilizing worldwide demographics and data, we seek to illustrate through information extraction, visual creativity, and statistical patterns to prove if having a healthier diet will increase the chances of survival against COVID-19. Through Data Science techniques such as Python regression analysis, null-hypothesis testing, and exploratory data analysis, we are determined to prove and disprove popular assumptions as to whether certain factors regarding the health of the individual affect COVID-19 mortality rates. The following variables will be utilized to prove our hypothesis: Obesity, Undernourishment, Vegetable consumption, Treenut consumption, and Fruits-Excluding Wine consumption.
To know more about the topics throughout the tutorial, we have links to various sources that are specified by bracketed numbers. These numbers are from the Works Cited Section at the bottom of our Tutorial. The sources provide various information regarding Covid-19 origins and its high risk populations, along with the benefits or drawbacks to certain types of diets outlined in the argument of the Tutorial.
Getting Started
Before you begin, import the libraries below into your Python 3 workspace. Each one of the libraries used below will be used to help visualize and manipulate the datasets.
# Install
! pip install plotly
# Import Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.formula.api as sm
import plotly.express as px
import plotly.graph_objects as go
import warnings
import statsmodels.formula.api as smf
# From Libraries
from sklearn import linear_model
from scipy import stats
from patsy.builtins import Q
from sklearn.preprocessing import PolynomialFeatures
from sklearn.preprocessing import LabelEncoder
Collecting plotly Downloading plotly-5.4.0-py2.py3-none-any.whl (25.3 MB) |████████████████████████████████| 25.3 MB 17.1 MB/s eta 0:00:01 |███████████▍ | 9.0 MB 5.4 MB/s eta 0:00:04 Requirement already satisfied: six in /opt/conda/lib/python3.8/site-packages (from plotly) (1.15.0) Collecting tenacity>=6.2.0 Downloading tenacity-8.0.1-py3-none-any.whl (24 kB) Installing collected packages: tenacity, plotly Successfully installed plotly-5.4.0 tenacity-8.0.1
Information About The Dataset
The datasets that we used came from Kaggle: Covid-19 Healthy Diet Dataset - Fat Supply Quantity and Covid-19 Healthy Diet Dataset - Food Supply Quantity
There are 33 columns in the dataset :
- Cephalopods; Crustaceans; Demersal Fish; Freshwater Fish; Marine Fish, Other; Molluscs, Other; Pelagic Fish
Note: Do not be alarmed that some of the columns have all zeroes in them. Since we are doing data analysis on the Fat Supply Quantity, the food in columns labeled: 'Alcoholic Beverages', 'Aquatic Products, Other', 'Sugar Crops', and 'Sugar & Sweeteners' do not contain fat, if at all.
Specifically, the one dataset we are using is for the Fat Supply Quantity, meaning the percentage of fat intake from different types of food across the world. We will discover the further impact of these statistics in this tutorial.
Fat Supply Quantity Dataset
# Read the csv file on Covid 19 Data in the United States
covid_df = pd.read_csv("Fat_Supply_Quantity_Data.csv")
# Order all the Countries in the 'Country' column by alphabetical order
covid_df = covid_df.sort_values('Country', ascending = True)
# Print all the columns of the dataset
pd.set_option('display.max_columns', None)
# Print all the rows of the dataset
pd.set_option('display.max_rows', None)
# Print out dataset
covid_df
Country | Alcoholic Beverages | Animal Products | Animal fats | Aquatic Products, Other | Cereals - Excluding Beer | Eggs | Fish, Seafood | Fruits - Excluding Wine | Meat | Miscellaneous | Milk - Excluding Butter | Offals | Oilcrops | Pulses | Spices | Starchy Roots | Stimulants | Sugar Crops | Sugar & Sweeteners | Treenuts | Vegetal Products | Vegetable Oils | Vegetables | Obesity | Undernourished | Confirmed | Deaths | Recovered | Active | Population | Unit (all except Population) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Afghanistan | 0.0000 | 21.6397 | 6.2224 | 0.0000 | 8.0353 | 0.6859 | 0.0327 | 0.4246 | 6.1244 | 0.0163 | 8.2803 | 0.3103 | 1.0452 | 0.1960 | 0.2776 | 0.0490 | 0.0980 | 0.0000 | 0.0000 | 0.7513 | 28.3684 | 17.0831 | 0.3593 | 4.5 | 29.8 | 0.142134 | 0.006186 | 0.123374 | 0.012574 | 3.892800e+07 | % |
1 | Albania | 0.0000 | 32.0002 | 3.4172 | 0.0000 | 2.6734 | 1.6448 | 0.1445 | 0.6418 | 8.7428 | 0.0170 | 17.7576 | 0.2933 | 3.1622 | 0.1148 | 0.0000 | 0.0510 | 0.5270 | 0.0000 | 0.0000 | 0.9181 | 17.9998 | 9.2443 | 0.6503 | 22.3 | 6.2 | 2.967301 | 0.050951 | 1.792636 | 1.123714 | 2.838000e+06 | % |
2 | Algeria | 0.0000 | 14.4175 | 0.8972 | 0.0000 | 4.2035 | 1.2171 | 0.2008 | 0.5772 | 3.8961 | 0.0439 | 8.0934 | 0.1067 | 1.1983 | 0.2698 | 0.1568 | 0.1129 | 0.2886 | 0.0000 | 0.0000 | 0.8595 | 35.5857 | 27.3606 | 0.5145 | 26.6 | 3.9 | 0.244897 | 0.006558 | 0.167572 | 0.070767 | 4.435700e+07 | % |
3 | Angola | 0.0000 | 15.3041 | 1.3130 | 0.0000 | 6.5545 | 0.1539 | 1.4155 | 0.3488 | 11.0268 | 0.0308 | 1.2309 | 0.1539 | 3.9902 | 0.3282 | 0.0103 | 0.7078 | 0.1128 | 0.0000 | 0.0000 | 0.0308 | 34.7010 | 22.4638 | 0.1231 | 6.8 | 25 | 0.061687 | 0.001461 | 0.056808 | 0.003419 | 3.252200e+07 | % |
4 | Antigua and Barbuda | 0.0000 | 27.7033 | 4.6686 | 0.0000 | 3.2153 | 0.3872 | 1.5263 | 1.2177 | 14.3202 | 0.0898 | 6.6607 | 0.1347 | 1.3579 | 0.0673 | 0.3591 | 0.0449 | 1.0549 | 0.0000 | 0.0000 | 0.2020 | 22.2995 | 14.4436 | 0.2469 | 19.1 | NaN | 0.293878 | 0.007143 | 0.190816 | 0.095918 | 9.800000e+04 | % |
5 | Argentina | 0.0000 | 30.3572 | 3.3076 | 0.0000 | 1.3316 | 1.5706 | 0.1664 | 0.2091 | 19.2693 | 0.0000 | 5.8512 | 0.1878 | 0.0640 | 0.0213 | 0.0213 | 0.1110 | 0.2475 | 0.0000 | 0.0000 | 0.1366 | 19.6449 | 17.3147 | 0.1878 | 28.5 | 4.6 | 4.356147 | 0.108227 | 3.905192 | 0.342729 | 4.537700e+07 | % |
6 | Armenia | 0.0000 | 29.6642 | 6.2619 | 0.0000 | 2.5068 | 1.6196 | 0.2218 | 0.5468 | 10.8165 | 0.0361 | 10.4709 | 0.2734 | 0.6602 | 0.0774 | 0.0103 | 0.0567 | 1.8002 | 0.0000 | 0.0000 | 0.9542 | 20.3384 | 12.8127 | 0.8717 | 20.9 | 4.3 | 5.681225 | 0.105345 | 5.398410 | 0.177470 | 2.956000e+06 | % |
7 | Australia | 0.0000 | 24.1099 | 4.6030 | 0.0000 | 0.9908 | 0.7017 | 0.4515 | 0.4028 | 11.6002 | 0.0520 | 6.5196 | 0.2339 | 1.2929 | 0.0260 | 0.1007 | 0.0422 | 0.7926 | 0.0000 | 0.0000 | 1.6145 | 25.8901 | 20.3612 | 0.2144 | 30.4 | <2.5 | 0.112025 | 0.003530 | 0.101289 | 0.007207 | 2.575400e+07 | % |
8 | Austria | 0.0000 | 27.8268 | 12.8517 | 0.0000 | 1.2297 | 1.2147 | 0.4259 | 0.2249 | 8.1099 | 0.0000 | 5.1497 | 0.0750 | 1.1367 | 0.0120 | 0.1020 | 0.0450 | 0.4439 | 0.0000 | 0.0000 | 0.8398 | 22.1762 | 17.9323 | 0.2039 | 21.9 | <2.5 | 4.739982 | 0.089679 | 4.496870 | 0.153433 | 8.914000e+06 | % |
9 | Azerbaijan | 0.0000 | 32.1198 | 7.7987 | 0.0000 | 5.4481 | 2.0197 | 0.2122 | 0.5940 | 11.9993 | 0.0170 | 9.9202 | 0.1612 | 0.1867 | 0.0255 | 0.0170 | 0.1697 | 1.3663 | 0.0000 | 0.0000 | 2.2573 | 17.8802 | 7.1538 | 0.6534 | 19.9 | <2.5 | 2.285536 | 0.031223 | 2.225574 | 0.028740 | 1.010800e+07 | % |
10 | Bahamas | 0.0000 | 30.2259 | 4.5600 | 0.0000 | 3.6327 | 1.2829 | 1.4991 | 0.8995 | 17.4941 | 0.3556 | 5.1318 | 0.2580 | 2.6077 | 0.0209 | 0.2719 | 0.0349 | 0.9343 | 0.0000 | 0.0000 | 0.4532 | 19.7741 | 10.1659 | 0.3974 | 32.1 | NaN | 2.100763 | 0.044784 | 1.735115 | 0.320865 | 3.930000e+05 | % |
11 | Bangladesh | 0.0000 | 9.8365 | 1.2369 | 0.0000 | 6.9946 | 1.2664 | 2.1646 | 0.4270 | 1.8407 | 0.0147 | 3.2249 | 0.1178 | 0.6332 | 0.5448 | 1.0602 | 0.2209 | 0.0295 | 0.0147 | 0.0000 | 0.2651 | 40.1561 | 29.6422 | 0.3092 | 3.4 | 14.7 | 0.316691 | 0.004823 | 0.284344 | 0.027524 | 1.698090e+08 | % |
12 | Barbados | 0.0000 | 25.8451 | 3.9733 | 0.0000 | 2.1187 | 1.2130 | 1.8060 | 0.4636 | 13.1382 | 0.3235 | 5.6176 | 0.0970 | 3.2616 | 0.2318 | 0.3181 | 0.1078 | 0.6038 | 0.0000 | 0.0000 | 0.7817 | 24.1576 | 15.6882 | 0.2534 | 24.8 | 3.9 | 0.583972 | 0.006272 | 0.470035 | 0.107666 | 2.870000e+05 | % |
13 | Belarus | 0.0000 | 23.8181 | 7.8662 | 0.0000 | 4.8075 | 1.5772 | 0.5151 | 0.2316 | 11.5636 | 0.0519 | 2.0644 | 0.2316 | 0.4392 | 0.0000 | 0.0160 | 0.1957 | 0.8385 | 0.0000 | 0.0000 | 1.0462 | 26.1859 | 18.2119 | 0.3394 | 26.6 | <2.5 | 2.740896 | 0.018912 | 2.612704 | 0.109280 | 9.375000e+06 | % |
14 | Belgium | 0.0000 | 26.7378 | 12.6234 | 0.0000 | 1.3531 | 1.1703 | 0.6188 | 0.2373 | 5.6817 | 0.0000 | 6.5057 | 0.1379 | 0.5226 | 0.0353 | 0.0994 | 0.0770 | 0.0834 | 0.0000 | 0.0000 | 1.2056 | 23.2622 | 19.3504 | 0.2982 | 24.5 | <2.5 | 6.286322 | 0.185428 | 0.000000 | 6.100894 | 1.151500e+07 | % |
15 | Belize | 0.0000 | 23.7877 | 9.8102 | 0.0000 | 3.0510 | 0.6759 | 0.4155 | 0.3039 | 10.3435 | 0.1984 | 2.5053 | 0.0310 | 1.4511 | 0.3783 | 0.0496 | 0.0310 | 0.8062 | 0.0000 | 0.0000 | 0.3845 | 26.2123 | 19.3538 | 0.2108 | 22.4 | 7.5 | 2.872792 | 0.073031 | 2.739618 | 0.060143 | 4.190000e+05 | % |
16 | Benin | 0.0000 | 6.1742 | 0.4816 | 0.0000 | 4.6952 | 0.2064 | 0.8599 | 0.1978 | 3.2849 | 0.0258 | 1.2469 | 0.0946 | 7.3007 | 0.6535 | 2.5970 | 1.0835 | 0.1118 | 0.0000 | 0.0000 | 1.9176 | 43.8301 | 24.8775 | 0.3612 | 8.2 | 10.1 | 0.034344 | 0.000450 | 0.029183 | 0.004710 | 1.220900e+07 | % |
17 | Bolivia | 0.0000 | 30.4177 | 4.1685 | 0.0000 | 2.7296 | 1.5174 | 0.1831 | 0.5407 | 21.1476 | 0.0436 | 3.2703 | 0.1395 | 1.3604 | 0.2093 | 0.1483 | 0.4796 | 0.7849 | 0.0000 | 0.0000 | 0.7413 | 19.5779 | 12.3485 | 0.1919 | 18.7 | 17.1 | 1.952446 | 0.092435 | 1.438614 | 0.421396 | 1.163300e+07 | % |
18 | Bosnia and Herzegovina | 0.0000 | 24.6478 | 2.4453 | 0.0000 | 3.6588 | 0.8354 | 0.3049 | 0.5976 | 9.6957 | 0.0915 | 11.2629 | 0.1037 | 0.9208 | 0.2012 | 2.2196 | 0.1342 | 2.4819 | 0.0000 | 0.0000 | 0.9574 | 25.3552 | 13.2996 | 0.7866 | 19.4 | <2.5 | 3.762085 | 0.145535 | 2.960317 | 0.656233 | 3.281000e+06 | % |
19 | Botswana | 0.0000 | 16.9634 | 4.1310 | 0.0000 | 7.1830 | 0.2697 | 0.3622 | 0.1696 | 3.4759 | 0.1927 | 8.5241 | 0.2081 | 1.1715 | 0.1156 | 0.5472 | 0.1927 | 0.7399 | 0.0000 | 0.0000 | 0.1541 | 33.0328 | 22.3815 | 0.1850 | 16.1 | 26.4 | 1.014372 | 0.007035 | 0.844799 | 0.162538 | 2.317000e+06 | % |
20 | Brazil | 0.0000 | 24.8515 | 4.3627 | 0.0000 | 1.1278 | 0.7706 | 0.1886 | 0.2528 | 14.2920 | 0.0000 | 5.1654 | 0.0763 | 1.7097 | 0.2528 | 0.0080 | 0.1204 | 0.1164 | 0.0361 | 0.0120 | 0.1766 | 25.1445 | 21.2153 | 0.1204 | 22.3 | <2.5 | 4.460165 | 0.108603 | 3.979469 | 0.372094 | 2.118120e+08 | % |
21 | Bulgaria | 0.0000 | 27.1456 | 8.0274 | 0.0000 | 1.8485 | 1.2201 | 0.3404 | 0.2723 | 9.3523 | 0.0262 | 7.9698 | 0.2356 | 1.6547 | 0.0471 | 0.6179 | 0.0367 | 0.1885 | 0.0000 | 0.0000 | 0.3404 | 22.8518 | 17.5787 | 0.2461 | 27.4 | 3.6 | 3.227256 | 0.134416 | 2.788956 | 0.303883 | 6.927000e+06 | % |
22 | Burkina Faso | 0.0000 | 7.2367 | 0.5981 | 0.0000 | 10.5524 | 0.4061 | 0.3692 | 0.0443 | 3.5741 | 0.0148 | 2.1636 | 0.1255 | 11.9406 | 0.5391 | 0.0960 | 0.0369 | 0.0222 | 0.0000 | 0.0000 | 0.2658 | 42.7706 | 19.1774 | 0.0665 | 4.5 | 20 | 0.053710 | 0.000641 | 0.048031 | 0.005038 | 2.090300e+07 | % |
23 | Cabo Verde | 0.0000 | 21.9578 | 4.2923 | 0.0000 | 5.1318 | 0.8468 | 0.5256 | 0.1898 | 9.9204 | 0.1679 | 6.2851 | 0.0803 | 1.4819 | 0.4526 | 0.9709 | 0.0949 | 0.4161 | 0.0000 | 0.0000 | 0.1752 | 28.0385 | 18.6656 | 0.3066 | 10.6 | 12.6 | 2.586331 | 0.024281 | 2.461151 | 0.100899 | 5.560000e+05 | % |
24 | Cambodia | 0.0000 | 18.8510 | 0.8839 | 0.0000 | 9.4179 | 0.5639 | 4.8461 | 0.2438 | 11.7799 | 0.1372 | 0.6248 | 0.1372 | 8.2902 | 0.2743 | 0.5029 | 0.3657 | 0.0610 | 0.0762 | 0.0000 | 0.3048 | 31.1490 | 11.2313 | 0.2591 | 3.5 | 16.4 | 0.003059 | 0.000000 | 0.002930 | 0.000129 | 1.549700e+07 | % |
25 | Cameroon | 0.0000 | 6.3264 | 0.7838 | 0.0000 | 6.9796 | 0.0746 | 0.9051 | 0.7931 | 3.3685 | 0.0280 | 1.1197 | 0.0840 | 9.7509 | 0.8491 | 0.7465 | 0.5319 | 0.1213 | 0.0000 | 0.0000 | 0.1026 | 43.6689 | 23.2155 | 0.5505 | 9.5 | 9.9 | 0.118031 | 0.001782 | 0.110914 | 0.005335 | 2.659800e+07 | % |
26 | Canada | 0.0000 | 23.1663 | 9.7895 | 0.0000 | 1.5440 | 1.2437 | 0.4244 | 0.4244 | 7.8211 | 0.0620 | 3.8812 | 0.0065 | 2.3600 | 0.1991 | 0.0979 | 0.0588 | 0.1795 | 0.0000 | 0.0000 | 1.2110 | 26.8353 | 20.4733 | 0.2220 | 31.3 | <2.5 | 2.109961 | 0.054203 | 1.909848 | NaN | 3.819000e+07 | % |
27 | Central African Republic | 0.0000 | 18.5453 | 2.8767 | 0.0000 | 2.7645 | 0.1122 | 0.5509 | 0.4998 | 12.9144 | 0.0102 | 1.7342 | 0.3468 | 7.0183 | 0.4794 | 0.0102 | 1.0609 | 0.0408 | 0.0000 | 0.0000 | 0.0000 | 31.4598 | 19.4838 | 0.0918 | 6.3 | 59.6 | 0.103292 | 0.001304 | 0.101139 | 0.000849 | 4.830000e+06 | % |
28 | Chad | 0.0000 | 16.8564 | 3.1261 | 0.0000 | 7.9860 | 0.0701 | 0.6480 | 0.0701 | 7.8546 | 0.0088 | 4.4308 | 0.7268 | 16.7863 | 0.5342 | 0.0000 | 0.1926 | 0.0263 | 0.0000 | 0.0000 | 0.0000 | 33.1436 | 7.5131 | 0.0263 | 4.8 | 37.5 | 0.020578 | 0.000741 | 0.016881 | 0.002957 | 1.687700e+07 | % |
29 | Chile | 0.0000 | 32.5206 | 5.2608 | 0.0000 | 3.1847 | 1.4085 | 0.5204 | 0.4186 | 20.2172 | 0.0339 | 5.0798 | 0.0396 | 1.1596 | 0.2093 | 0.0283 | 0.1810 | 0.4356 | 0.0000 | 0.0000 | 0.7241 | 17.4737 | 10.8440 | 0.2602 | 28.8 | 2.7 | 3.842229 | 0.097047 | 3.626194 | NaN | 1.947000e+07 | % |
30 | China | 0.0000 | 31.0465 | 3.4468 | 0.0097 | 2.5989 | 2.3066 | 0.9817 | 0.2344 | 21.6062 | 0.1517 | 2.2156 | 0.4784 | 1.8351 | 0.0234 | 0.0676 | 0.0565 | 0.9362 | 0.0000 | 0.0179 | 1.7979 | 18.9535 | 10.6590 | 0.5763 | 6.6 | 8.5 | 0.007156 | 0.000344 | 0.006685 | 0.000126 | 1.402385e+09 | % |
31 | Colombia | 0.0000 | 21.4008 | 1.7819 | 0.0000 | 1.7347 | 1.7819 | 0.3717 | 1.2273 | 11.3996 | 0.0177 | 5.9535 | 0.1180 | 0.9854 | 0.1652 | 0.1239 | 0.2832 | 0.2655 | 0.0000 | 0.0000 | 0.5251 | 28.5992 | 23.0824 | 0.1829 | 22.1 | 4.8 | 4.350795 | 0.112639 | 4.090144 | 0.148012 | 4.944400e+07 | % |
32 | Congo | 0.0000 | 12.9993 | 0.3390 | 0.0000 | 2.7016 | 0.1377 | 1.8540 | 0.8370 | 9.6514 | 0.0530 | 0.6780 | 0.3390 | 5.0429 | 0.1483 | 0.0106 | 1.0806 | 0.5191 | 0.0000 | 0.0000 | 0.0212 | 36.9954 | 26.0091 | 0.5827 | 8.4 | 40.3 | 0.571675 | 0.014516 | 0.379721 | 0.177437 | 5.518000e+06 | % |
33 | Costa Rica | 0.0000 | 20.5571 | 6.1000 | 0.0000 | 1.6733 | 1.1492 | 0.9286 | 0.5700 | 5.6449 | 0.0138 | 6.6700 | 0.0552 | 1.0389 | 0.2436 | 0.0414 | 0.0506 | 0.4045 | 0.0000 | 0.0138 | 0.3540 | 29.4475 | 24.8736 | 0.1701 | 25.7 | 4.8 | 3.843436 | 0.052279 | 3.055782 | 0.735375 | 5.111000e+06 | % |
34 | Cote d'Ivoire | 0.0000 | 5.3253 | 0.2726 | 0.0000 | 4.9709 | 0.4271 | 1.2268 | 0.5271 | 2.5809 | 0.0091 | 0.5634 | 0.2545 | 4.8891 | 0.1000 | 0.6089 | 1.2359 | 1.9357 | 0.0000 | 0.0000 | 2.3355 | 44.6747 | 27.7354 | 0.3272 | 9.0 | 19 | 0.112959 | 0.000619 | 0.106105 | 0.006235 | 2.617500e+07 | % |
35 | Croatia | 0.0000 | 29.3768 | 7.4457 | 0.0000 | 2.9565 | 0.9476 | 0.5633 | 0.2577 | 11.4896 | 0.0000 | 8.7951 | 0.1310 | 1.8123 | 0.0175 | 0.0655 | 0.0393 | 2.6726 | 0.0000 | 0.0000 | 0.6987 | 20.6254 | 11.7123 | 0.3930 | 27.1 | <2.5 | 5.848905 | 0.127960 | 5.648706 | 0.072239 | 4.020000e+06 | % |
36 | Cuba | 0.0000 | 25.9025 | 3.2213 | 0.0000 | 4.4779 | 1.4788 | 0.2638 | 0.6179 | 16.0233 | 0.0139 | 4.7695 | 0.1458 | 2.6937 | 0.6248 | 0.0417 | 0.3749 | 0.1458 | 0.0000 | 0.0000 | 0.0069 | 24.0975 | 14.5446 | 0.5554 | 26.7 | <2.5 | 0.283760 | 0.002065 | 0.230822 | 0.050873 | 1.128100e+07 | % |
37 | Cyprus | 0.0000 | 20.9578 | 1.8698 | 0.0000 | 3.4616 | 1.0044 | 0.7309 | 0.3632 | 10.5506 | 0.1614 | 6.6945 | 0.1031 | 2.1164 | 0.0628 | 0.0538 | 0.0404 | 1.9236 | 0.0000 | 0.0000 | 0.8609 | 29.0467 | 19.7381 | 0.2601 | 22.6 | 5.6 | 2.621707 | 0.017481 | 0.170423 | 2.433803 | 1.207000e+06 | % |
38 | Czechia | 0.0000 | 25.1685 | 9.7011 | 0.0000 | 1.1998 | 0.8222 | 0.3000 | 0.1870 | 8.6212 | 0.0212 | 5.6463 | 0.0776 | 0.4941 | 0.0353 | 0.0635 | 0.0565 | 0.9563 | 0.0000 | 0.0000 | 0.4164 | 24.8333 | 21.2267 | 0.1729 | 28.5 | <2.5 | 9.612841 | 0.159845 | 8.555328 | 0.897667 | 1.071600e+07 | % |
39 | Denmark | 0.0000 | 35.4131 | 14.2498 | 0.0000 | 1.4741 | 1.7484 | 1.1313 | 0.5257 | 9.2408 | 0.0000 | 8.8142 | 0.2285 | 0.7161 | 0.0152 | 0.1752 | 0.0533 | 1.6874 | 0.0000 | 0.0000 | 1.1846 | 14.5850 | 8.4752 | 0.2819 | 21.3 | <2.5 | 3.463218 | 0.038017 | 3.307360 | 0.117842 | 5.829000e+06 | % |
40 | Djibouti | 0.0000 | 11.1065 | 1.3966 | 0.0000 | 4.3977 | 0.2494 | 0.2910 | 0.1247 | 5.1210 | 0.1413 | 3.8573 | 0.1912 | 0.4323 | 0.5570 | 0.3159 | 0.0333 | 0.5653 | 0.0000 | 0.0000 | 0.4157 | 38.8977 | 31.4490 | 0.4572 | 12.2 | 18.9 | 0.601316 | 0.006377 | 0.592308 | 0.002632 | 9.880000e+05 | % |
41 | Dominica | 0.0000 | 26.9250 | 3.8063 | 0.0000 | 1.4913 | 0.3619 | 1.6536 | 1.1856 | 13.7339 | 0.1123 | 7.2320 | 0.1373 | 4.8172 | 0.1373 | 0.4680 | 0.4867 | 1.7846 | 0.0000 | 0.0000 | 0.0312 | 23.0812 | 12.3237 | 0.2309 | 28.2 | 6.2 | 0.168056 | 0.000000 | 0.152778 | 0.015278 | 7.200000e+04 | % |
42 | Dominican Republic | 0.0000 | 15.2779 | 2.2261 | 0.0000 | 1.4528 | 1.1248 | 0.2484 | 3.6133 | 7.3718 | 0.0422 | 4.1194 | 0.1875 | 2.9103 | 0.1921 | 0.0609 | 0.0797 | 0.2906 | 0.0000 | 0.0000 | 0.0703 | 34.7221 | 25.8881 | 0.1218 | 26.9 | 9.5 | 2.115695 | 0.026676 | 1.577705 | 0.511314 | 1.050000e+07 | % |
43 | Ecuador | 0.0000 | 20.9283 | 4.7198 | 0.0000 | 3.6672 | 1.0246 | 0.2519 | 0.4367 | 8.7453 | 0.0280 | 6.0803 | 0.1008 | 0.8566 | 0.0616 | 0.0392 | 0.0840 | 0.1848 | 0.0000 | 0.0000 | 0.0784 | 29.0745 | 23.5541 | 0.0840 | 19.3 | 7.9 | 1.468306 | 0.085683 | 1.198184 | 0.184438 | 1.751100e+07 | % |
44 | Egypt | 0.0000 | 15.9979 | 3.4231 | 0.0000 | 13.4988 | 0.8448 | 1.3200 | 0.7216 | 6.4678 | 0.0088 | 3.6343 | 0.2992 | 4.4615 | 0.1584 | 0.2376 | 0.1936 | 0.0792 | 0.0704 | 0.0000 | 0.2992 | 34.0109 | 13.6132 | 0.6600 | 31.1 | 4.5 | 0.167759 | 0.009527 | 0.131002 | 0.027229 | 1.008030e+08 | % |
45 | El Salvador | 0.0000 | 23.3032 | 6.3901 | 0.0000 | 8.1958 | 1.6034 | 0.4514 | 1.4321 | 6.6547 | 0.1012 | 8.1491 | 0.0545 | 5.0669 | 0.5837 | 0.0311 | 0.1401 | 0.3269 | 0.0000 | 0.0000 | 0.1167 | 26.6968 | 10.2506 | 0.4514 | 22.7 | 9 | 0.867721 | 0.025814 | 0.778136 | 0.063771 | 6.481000e+06 | % |
46 | Estonia | 0.0000 | 33.2190 | 6.5339 | 0.0000 | 2.8982 | 1.5830 | 0.2818 | 0.3805 | 10.4279 | 0.0188 | 14.2750 | 0.1174 | 0.3664 | 0.0658 | 0.1926 | 0.0892 | 2.7855 | 0.0000 | 0.0000 | 1.2495 | 16.7833 | 8.4457 | 0.2865 | 23.8 | 2.9 | 3.569647 | 0.034260 | 2.828550 | 0.706837 | 1.331000e+06 | % |
47 | Eswatini | 0.0000 | 20.8055 | 3.1415 | 0.0000 | 12.0023 | 0.4718 | 0.3682 | 0.4718 | 11.1162 | 0.1151 | 5.4315 | 0.2762 | 3.4062 | 0.2071 | 0.8170 | 0.3222 | 0.0575 | 0.0000 | 0.0000 | 0.6559 | 29.1945 | 10.9436 | 0.1956 | 13.5 | 20.6 | 1.465670 | 0.054710 | 1.038859 | 0.372101 | 1.104000e+06 | % |
48 | Ethiopia | 0.0000 | 11.1691 | 1.4358 | 0.0000 | 11.3929 | 0.2238 | 0.0559 | 0.4102 | 4.1768 | 0.0000 | 5.1091 | 0.1678 | 2.6851 | 2.5545 | 2.6851 | 0.8018 | 0.0186 | 0.0000 | 0.0000 | 0.7459 | 38.8216 | 17.4156 | 0.1305 | 3.6 | 20.6 | 0.123093 | 0.001867 | 0.109237 | 0.011989 | 1.149160e+08 | % |
49 | Fiji | 0.0000 | 20.0472 | 7.6883 | 0.0000 | 1.5114 | 0.5773 | 1.4694 | 0.0840 | 8.4230 | 0.0262 | 1.7948 | 0.0945 | 8.9635 | 0.2991 | 0.1312 | 0.3569 | 0.4408 | 0.0000 | 0.0000 | 0.1469 | 29.9554 | 17.8168 | 0.1732 | 30.0 | 3.7 | 0.006250 | 0.000223 | 0.005915 | 0.000112 | 8.960000e+05 | % |
50 | Finland | 0.0000 | 36.7250 | 6.3787 | 0.0000 | 1.7872 | 0.8524 | 0.9384 | 0.2901 | 16.6649 | 0.1146 | 11.8155 | 0.0788 | 0.6017 | 0.0179 | 0.0430 | 0.0537 | 0.7844 | 0.0000 | 0.0000 | 0.5157 | 13.2732 | 8.8607 | 0.2041 | 24.9 | <2.5 | 0.854802 | 0.012443 | 0.560680 | 0.281678 | 5.529000e+06 | % |
51 | France | 0.0000 | 30.2594 | 9.1996 | 0.0000 | 1.4334 | 0.9894 | 0.8752 | 0.3869 | 11.0864 | 0.0159 | 7.9533 | 0.1554 | 0.6850 | 0.0254 | 0.0285 | 0.0412 | 0.6279 | 0.0000 | 0.0000 | 0.8530 | 19.7406 | 15.4658 | 0.1776 | 23.2 | <2.5 | 5.199055 | 0.121558 | 0.367877 | 4.709620 | 6.494000e+07 | % |
52 | French Polynesia | 0.0000 | 25.1596 | 4.6648 | 0.0000 | 3.7271 | 0.8220 | 1.5842 | 0.1995 | 14.0782 | 0.2913 | 3.8827 | 0.1277 | 4.7566 | 0.0399 | 0.0200 | 0.0758 | 1.2690 | 0.0000 | 0.0000 | 0.3192 | 24.8404 | 14.0024 | 0.1397 | NaN | 4.2 | NaN | NaN | NaN | NaN | 2.800000e+05 | % |
53 | Gabon | 0.0000 | 19.2656 | 0.7379 | 0.0000 | 4.1074 | 0.1956 | 2.0359 | 0.6401 | 13.4068 | 0.1422 | 2.2937 | 0.5957 | 8.9438 | 0.0089 | 0.0000 | 0.5779 | 0.7112 | 0.0000 | 0.0000 | 0.0178 | 30.7344 | 15.3805 | 0.2045 | 13.4 | 10.5 | 0.513537 | 0.003182 | 0.483953 | 0.026401 | 2.231000e+06 | % |
54 | Gambia | 0.0000 | 6.0418 | 0.2548 | 0.0000 | 4.9416 | 0.2113 | 1.3488 | 0.0373 | 1.3488 | 0.0622 | 2.8468 | 0.0311 | 12.4751 | 0.0311 | 0.0000 | 0.0124 | 0.0995 | 0.0000 | 0.0000 | 0.2362 | 43.9582 | 25.9883 | 0.0746 | 8.7 | 10.2 | 0.175300 | 0.005544 | 0.160778 | 0.008978 | 2.417000e+06 | % |
55 | Georgia | 0.0000 | 25.2749 | 7.2612 | 0.0000 | 4.5695 | 1.1781 | 0.4284 | 0.2071 | 7.2326 | 0.1071 | 9.0818 | 0.1000 | 0.6854 | 0.0000 | 0.0714 | 0.0928 | 2.7774 | 0.0000 | 0.0000 | 1.1566 | 24.7180 | 14.8579 | 0.1999 | 23.3 | 7.9 | 7.042261 | 0.087995 | 6.805249 | 0.149017 | 3.715000e+06 | % |
56 | Germany | 0.0000 | 28.1419 | 11.0084 | 0.0000 | 1.1778 | 1.0462 | 0.7019 | 0.2632 | 8.9127 | 0.0000 | 6.4289 | 0.0472 | 0.8909 | 0.0101 | 0.0844 | 0.0607 | 0.6614 | 0.0000 | 0.0000 | 1.6739 | 21.8581 | 16.8163 | 0.2160 | 25.7 | <2.5 | 2.743101 | 0.073891 | 2.451366 | 0.217844 | 8.330000e+07 | % |
57 | Ghana | 0.0000 | 7.6875 | 0.8060 | 0.0000 | 5.6789 | 0.3472 | 2.7774 | 1.2151 | 3.1618 | 0.0496 | 0.4216 | 0.1736 | 10.9113 | 0.3968 | 1.2771 | 2.0087 | 0.0000 | 0.0000 | 0.0000 | 0.0868 | 42.3063 | 20.4464 | 0.2480 | 9.7 | 5.5 | 0.225424 | 0.001445 | 0.204364 | 0.019615 | 3.107300e+07 | % |
58 | Greece | 0.0000 | 17.9063 | 1.6989 | 0.0000 | 1.3280 | 0.7749 | 0.3245 | 0.2484 | 6.6267 | 0.0298 | 8.3355 | 0.1424 | 1.8413 | 0.0795 | 0.0497 | 0.0431 | 0.7749 | 0.0000 | 0.0000 | 1.8810 | 32.0970 | 25.5332 | 0.2848 | 27.4 | <2.5 | 1.525355 | 0.055617 | 0.876299 | 0.593439 | 1.070000e+07 | % |
59 | Grenada | 0.0000 | 23.0842 | 2.4889 | 0.0000 | 1.4883 | 1.4440 | 1.2856 | 2.8436 | 12.9576 | 0.1267 | 4.8195 | 0.0823 | 3.3186 | 0.1900 | 0.8803 | 0.0697 | 0.8740 | 0.0000 | 0.0000 | 0.1393 | 26.9158 | 16.8841 | 0.1077 | 20.2 | NaN | 0.130973 | 0.000885 | 0.129204 | 0.000885 | 1.130000e+05 | % |
60 | Guatemala | 0.0000 | 15.4397 | 1.7622 | 0.0000 | 9.3956 | 2.6186 | 0.1482 | 1.2516 | 7.0735 | 0.0247 | 3.7385 | 0.0988 | 3.7879 | 0.5764 | 0.1235 | 0.0247 | 0.3788 | 0.0000 | 0.0000 | 0.9305 | 34.5603 | 17.8113 | 0.2553 | 18.8 | 15.2 | 0.901899 | 0.032403 | 0.824294 | 0.045201 | 1.806600e+07 | % |
61 | Guinea | 0.0000 | 6.0747 | 0.7557 | 0.0000 | 4.7086 | 0.3125 | 0.5014 | 0.3415 | 2.8993 | 0.0363 | 1.4896 | 0.1163 | 6.6633 | 0.1744 | 0.0000 | 0.3343 | 0.2616 | 0.0000 | 0.0000 | 0.0073 | 43.9253 | 30.6133 | 0.7848 | 6.6 | 16.5 | 0.116760 | 0.000669 | 0.114013 | 0.002078 | 1.256000e+07 | % |
62 | Guinea-Bissau | 0.0000 | 10.8323 | 0.6274 | 0.0000 | 2.8828 | 0.1509 | 0.0715 | 0.2938 | 8.0527 | 0.0556 | 1.8027 | 0.1271 | 1.7154 | 0.0794 | 0.0000 | 0.1985 | 0.2224 | 0.0000 | 0.0000 | 3.3116 | 39.1677 | 30.3288 | 0.0794 | 8.2 | 28 | 0.143851 | 0.002387 | 0.125947 | 0.015516 | 1.927000e+06 | % |
63 | Guyana | 0.0000 | 22.7418 | 1.0020 | 0.0000 | 2.9072 | 0.3340 | 1.1690 | 1.5030 | 12.5550 | 0.0911 | 7.6287 | 0.0531 | 9.3518 | 0.3871 | 0.8653 | 0.1290 | 0.9261 | 0.0000 | 0.0000 | 0.8805 | 27.2582 | 9.0633 | 1.1538 | 19.2 | 8.1 | 1.008767 | 0.022872 | 0.884625 | 0.101271 | 7.870000e+05 | % |
64 | Haiti | 0.0000 | 12.1462 | 1.7481 | 0.0000 | 5.7517 | 0.1353 | 0.3722 | 1.6804 | 7.8944 | 0.0564 | 1.8608 | 0.1353 | 3.3157 | 0.8458 | 0.0000 | 0.5526 | 0.3609 | 0.0000 | 0.0226 | 0.0000 | 37.8482 | 25.1494 | 0.1241 | 20.5 | 49.3 | 0.103113 | 0.002149 | 0.080295 | 0.020670 | 1.140300e+07 | % |
65 | Honduras | 0.0000 | 16.7113 | 2.6611 | 0.0000 | 8.3159 | 0.7448 | 0.1302 | 0.3760 | 7.8603 | 0.0651 | 5.2281 | 0.0868 | 0.5857 | 0.4194 | 0.0289 | 0.0217 | 0.3833 | 0.0000 | 0.0000 | 0.1012 | 33.2924 | 22.8722 | 0.1157 | 19.4 | 12.9 | 1.560270 | 0.037612 | 0.626369 | 0.896290 | 9.864000e+06 | % |
66 | Hungary | 0.0000 | 28.9972 | 12.3082 | 0.0000 | 1.2735 | 1.2018 | 0.1954 | 0.1270 | 10.0576 | 0.0000 | 5.2308 | 0.0033 | 0.3583 | 0.0391 | 0.1107 | 0.0391 | 0.7393 | 0.0000 | 0.0000 | 0.0456 | 21.0012 | 18.0699 | 0.2019 | 28.6 | <2.5 | 3.840739 | 0.133367 | 2.845797 | 0.861575 | 9.767000e+06 | % |
67 | Iceland | 0.0000 | 34.4402 | 7.1086 | 0.0000 | 4.3005 | 0.8991 | 1.6872 | 0.4975 | 13.6029 | 0.1199 | 11.0046 | 0.1349 | 0.8931 | 0.0120 | 0.1079 | 0.0300 | 1.5254 | 0.0000 | 0.0000 | 0.5005 | 15.5628 | 7.4053 | 0.1678 | 23.1 | <2.5 | 1.636141 | 0.007880 | 1.619293 | 0.008967 | 3.680000e+05 | % |
68 | India | 0.0000 | 16.0538 | 7.4859 | 0.0000 | 5.1196 | 0.7653 | 0.3783 | 0.4046 | 0.9061 | 0.0000 | 6.4919 | 0.0264 | 3.7386 | 1.1084 | 0.8005 | 0.0792 | 0.0176 | 0.0000 | 0.0000 | 0.5014 | 33.9462 | 21.7804 | 0.3958 | 3.8 | 14.5 | 0.773256 | 0.011070 | 0.751561 | 0.010625 | 1.400100e+09 | % |
69 | Indonesia | 0.0000 | 9.1722 | 0.7049 | 0.0000 | 6.6871 | 1.4549 | 2.5122 | 0.7139 | 3.6237 | 0.0000 | 0.7049 | 0.1627 | 7.3649 | 0.0452 | 0.3886 | 0.3072 | 0.4970 | 0.0000 | 0.0633 | 0.3976 | 40.8368 | 24.0918 | 0.2711 | 6.9 | 8.3 | 0.422100 | 0.011553 | 0.345620 | 0.064927 | 2.717390e+08 | % |
70 | Iran (Islamic Republic of) | 0.0000 | 16.9273 | 6.0372 | 0.0000 | 5.5867 | 1.3259 | 0.6114 | 0.6243 | 6.1724 | 0.0000 | 2.6389 | 0.1416 | 0.4055 | 0.2961 | 0.2124 | 0.1738 | 0.0451 | 0.0000 | 0.0000 | 4.9044 | 33.0759 | 20.2935 | 0.5278 | 25.5 | 4.9 | 1.734248 | 0.069414 | 1.482322 | 0.182512 | 8.415000e+07 | % |
71 | Iraq | 0.0000 | 11.1327 | 3.8118 | 0.0000 | 6.2761 | 1.9023 | 0.1441 | 0.2306 | 3.5164 | 0.0432 | 1.7366 | 0.0288 | 0.9584 | 0.1369 | 0.0576 | 0.0288 | 0.7278 | 0.0000 | 0.0000 | 0.6341 | 38.8673 | 29.6152 | 0.1513 | 27.4 | 29 | 1.579398 | 0.033004 | 1.508287 | 0.038107 | 3.972500e+07 | % |
72 | Ireland | 0.0000 | 27.1689 | 8.6472 | 0.0000 | 2.7091 | 0.9231 | 0.9372 | 0.2829 | 10.0477 | 0.0283 | 6.5464 | 0.0707 | 0.8630 | 0.0389 | 0.0707 | 0.0531 | 1.5137 | 0.0000 | 0.0000 | 0.8417 | 22.8329 | 16.1839 | 0.2405 | 26.9 | <2.5 | 4.048531 | 0.073436 | 0.467000 | 3.508095 | 5.003000e+06 | % |
73 | Israel | 0.0000 | 15.8138 | 1.2809 | 0.0000 | 1.6083 | 0.8700 | 0.5746 | 1.6051 | 8.1541 | 0.0257 | 4.8443 | 0.0867 | 3.0787 | 0.1605 | 0.0610 | 0.0353 | 0.8315 | 0.0000 | 0.0000 | 1.3194 | 34.1862 | 25.1782 | 0.2857 | 26.7 | <2.5 | 7.439052 | 0.055024 | 6.609635 | 0.774392 | 9.216000e+06 | % |
74 | Italy | 0.0000 | 21.8727 | 5.3931 | 0.0000 | 1.3598 | 1.0529 | 0.7327 | 0.2541 | 8.7134 | 0.0198 | 5.9146 | 0.0627 | 0.4753 | 0.0858 | 0.0099 | 0.0297 | 0.1056 | 0.0000 | 0.0000 | 1.4324 | 28.1306 | 24.1270 | 0.2277 | 22.9 | <2.5 | 4.353685 | 0.150927 | 3.494529 | 0.708229 | 6.029600e+07 | % |
75 | Jamaica | 0.0000 | 23.0867 | 6.1721 | 0.0064 | 2.2375 | 0.3242 | 1.2204 | 0.4322 | 9.5156 | 0.1081 | 5.7081 | 0.1462 | 3.4389 | 0.0890 | 1.4302 | 0.2161 | 0.3496 | 0.0000 | 0.0000 | 0.1398 | 26.9133 | 18.1732 | 0.2924 | 24.4 | 8 | 0.599537 | 0.012709 | 0.435208 | 0.151620 | 2.809000e+06 | % |
76 | Japan | 0.0000 | 19.4516 | 1.9098 | 0.0057 | 1.8642 | 3.1241 | 3.2666 | 0.1881 | 7.8331 | 0.0285 | 3.2096 | 0.1026 | 2.9816 | 0.0342 | 0.1425 | 0.0513 | 0.8266 | 0.0057 | 0.0000 | 0.6499 | 30.5456 | 23.4308 | 0.3478 | 4.4 | <2.5 | 0.320821 | 0.005059 | 0.284770 | 0.030991 | 1.259670e+08 | % |
77 | Jordan | 0.0000 | 12.2622 | 1.8696 | 0.0000 | 3.7391 | 0.5224 | 0.3189 | 0.1980 | 5.8122 | 0.0385 | 3.6512 | 0.0880 | 2.5074 | 0.2584 | 0.1155 | 0.0550 | 0.5994 | 0.0000 | 0.0000 | 0.9018 | 37.7378 | 29.0553 | 0.2694 | 33.4 | 12.2 | 3.126276 | 0.040912 | 2.991760 | 0.093604 | 1.067900e+07 | % |
78 | Kazakhstan | 0.0000 | 23.4158 | 3.0343 | 0.0000 | 1.7405 | 0.8975 | 0.1321 | 0.1787 | 9.6740 | 0.0389 | 9.5031 | 0.1748 | 0.6488 | 0.0078 | 0.0272 | 0.1088 | 0.9946 | 0.0000 | 0.0000 | 0.7654 | 26.5822 | 21.7258 | 0.3497 | 21.3 | <2.5 | 1.299402 | 0.016651 | 1.137764 | 0.144987 | 1.873200e+07 | % |
79 | Kenya | 0.0000 | 17.7332 | 1.8742 | 0.0000 | 9.9701 | 0.3438 | 0.2773 | 1.0757 | 6.5654 | 0.0000 | 8.4951 | 0.1885 | 1.6746 | 0.8429 | 0.0555 | 0.2551 | 0.0665 | 0.0000 | 0.0000 | 0.5989 | 32.2724 | 17.5003 | 0.2107 | 6.0 | 29.4 | 0.189975 | 0.003318 | 0.157491 | 0.029166 | 5.352800e+07 | % |
80 | Kiribati | 0.0000 | 10.5699 | 0.7467 | 0.0000 | 1.9560 | 0.2650 | 3.0833 | 0.3517 | 6.1955 | 0.0434 | 0.2553 | 0.0193 | 28.5639 | 0.0000 | 0.0145 | 0.2409 | 0.0193 | 0.0000 | 0.0000 | 0.8094 | 39.4325 | 7.2939 | 0.1397 | 45.6 | 2.7 | NaN | NaN | NaN | NaN | 1.250000e+05 | % |
81 | Korea, North | 0.0000 | 11.4709 | 0.0262 | 0.0000 | 7.2234 | 1.6911 | 0.5375 | 0.6424 | 8.7179 | 0.0131 | 0.4195 | 0.0918 | 0.9832 | 0.6555 | 0.0000 | 0.3146 | 0.0393 | 0.0000 | 0.0000 | 0.0262 | 38.5160 | 27.5957 | 1.0357 | 7.1 | 47.8 | NaN | NaN | NaN | NaN | 2.577900e+07 | % |
82 | Korea, South | 0.0976 | 20.0483 | 4.2523 | 0.0511 | 1.8403 | 1.3524 | 1.9147 | 0.1766 | 11.1860 | 0.0000 | 1.1386 | 0.1534 | 1.8914 | 0.0186 | 0.0372 | 0.0325 | 0.2370 | 0.0000 | 0.0000 | 1.2036 | 29.9563 | 23.7197 | 0.6924 | 4.9 | <2.5 | 0.156227 | 0.002841 | 0.136855 | 0.016531 | 5.178100e+07 | % |
83 | Kuwait | 0.0000 | 19.8923 | 2.1588 | 0.0000 | 3.0847 | 2.3242 | 0.3732 | 0.3496 | 9.5706 | 0.1086 | 5.2766 | 0.1890 | 1.3416 | 0.1984 | 0.5385 | 0.0472 | 1.5353 | 0.0000 | 0.0000 | 1.1810 | 30.1101 | 21.2150 | 0.5055 | 37.0 | 2.8 | 3.624728 | 0.020550 | 3.434087 | 0.170092 | 4.691000e+06 | % |
84 | Kyrgyzstan | 0.0000 | 29.1225 | 3.4472 | 0.0000 | 4.0964 | 0.8655 | 0.0895 | 0.2388 | 10.1776 | 0.0448 | 14.2068 | 0.3358 | 0.0895 | 0.1940 | 0.0970 | 0.1865 | 2.1564 | 0.0000 | 0.0000 | 1.5893 | 20.8849 | 11.4610 | 0.7163 | 15.4 | 7.1 | 1.288929 | 0.021580 | 1.236609 | 0.030740 | 6.594000e+06 | % |
85 | Lao People's Democratic Republic | 0.0000 | 21.6306 | 3.9594 | 0.0000 | 9.0989 | 0.4974 | 1.6871 | 0.8777 | 15.0283 | 0.0878 | 0.2243 | 0.2243 | 5.6076 | 0.1365 | 1.0435 | 0.3121 | 0.0780 | 0.1853 | 0.0000 | 0.0683 | 28.3792 | 9.7620 | 1.1118 | 4.5 | 16.5 | 0.000621 | 0.000000 | 0.000566 | 0.000055 | 7.242000e+06 | % |
86 | Latvia | 0.0000 | 30.4390 | 10.4430 | 0.0000 | 1.5314 | 1.3430 | 0.8819 | 0.2526 | 9.7976 | 0.0361 | 7.8613 | 0.1122 | 0.6334 | 0.0000 | 0.0321 | 0.1323 | 2.0044 | 0.0000 | 0.0000 | 0.8819 | 19.5630 | 13.7943 | 0.2606 | 25.7 | <2.5 | 3.749737 | 0.069769 | 3.122976 | 0.556993 | 1.902000e+06 | % |
87 | Lebanon | 0.0000 | 12.4024 | 2.1637 | 0.0000 | 2.2530 | 0.3290 | 0.3681 | 0.5800 | 5.1361 | 0.0390 | 4.3553 | 0.0502 | 2.8385 | 0.2175 | 0.0836 | 0.1171 | 0.7250 | 0.0000 | 0.0000 | 2.9110 | 37.5976 | 27.4593 | 0.3736 | 31.3 | 11 | 4.656938 | 0.052190 | 2.947062 | 1.657685 | 6.825000e+06 | % |
88 | Lesotho | 0.0000 | 12.9600 | 0.5290 | 0.0000 | 18.3763 | 0.2415 | 0.2530 | 0.1495 | 9.1881 | 0.0460 | 2.4149 | 0.3450 | 0.7820 | 0.4025 | 0.3910 | 0.1840 | 0.1495 | 0.0000 | 0.0000 | 0.0345 | 37.0285 | 16.3523 | 0.1725 | 13.5 | 13.1 | 0.437908 | 0.008543 | 0.126331 | 0.303035 | 2.142000e+06 | % |
89 | Liberia | 0.0000 | 7.4228 | 0.4154 | 0.0000 | 3.3592 | 0.2528 | 0.3702 | 0.1445 | 6.0051 | 0.0361 | 0.2438 | 0.1355 | 1.5803 | 0.0361 | 0.0000 | 0.3070 | 0.1174 | 0.0000 | 0.0000 | 0.3883 | 42.5772 | 36.4186 | 0.1896 | 8.6 | 37.2 | 0.038671 | 0.001661 | 0.034994 | 0.002017 | 5.058000e+06 | % |
90 | Lithuania | 0.0000 | 32.3048 | 9.3880 | 0.0000 | 1.7819 | 1.9226 | 1.2380 | 0.3283 | 14.2134 | 0.0094 | 5.4302 | 0.1125 | 0.8441 | 0.2345 | 0.1970 | 0.0610 | 0.3423 | 0.0000 | 0.0000 | 0.9238 | 17.6975 | 12.7128 | 0.2579 | 28.4 | <2.5 | 6.667072 | 0.104760 | 4.939621 | 1.622691 | 2.794000e+06 | % |
91 | Luxembourg | 0.0000 | 32.4517 | 6.4786 | 0.0000 | 1.8437 | 1.6645 | 0.6987 | 0.3256 | 16.3118 | 0.0658 | 7.2286 | 0.0658 | 0.6402 | 0.0146 | 0.1646 | 0.0329 | 3.3838 | 0.0000 | 0.0000 | 0.1280 | 17.5519 | 10.6855 | 0.2634 | 24.2 | <2.5 | 8.150633 | 0.093354 | 7.661551 | 0.395728 | 6.320000e+05 | % |
92 | Madagascar | 0.0000 | 19.0932 | 1.7454 | 0.0000 | 10.0681 | 0.3406 | 0.7450 | 1.2984 | 11.5581 | 0.0213 | 4.4274 | 0.2980 | 1.5113 | 0.3193 | 0.2554 | 0.9153 | 0.1916 | 0.0213 | 0.0000 | 0.2129 | 30.9068 | 15.8791 | 0.1916 | 4.5 | 44.4 | 0.068849 | 0.001015 | 0.065779 | 0.002055 | 2.769100e+07 | % |
93 | Malawi | 0.0000 | 18.8711 | 2.6263 | 0.0000 | 13.0891 | 0.2753 | 0.6672 | 1.3767 | 14.6458 | 0.0106 | 0.4024 | 0.2542 | 5.6232 | 0.7519 | 0.0529 | 1.3555 | 0.0318 | 0.0000 | 0.0000 | 0.2012 | 31.1236 | 8.4189 | 0.2224 | 4.7 | 17.5 | 0.140486 | 0.004375 | 0.059320 | 0.076790 | 1.913000e+07 | % |
94 | Malaysia | 0.0000 | 17.1723 | 1.4813 | 0.0000 | 2.2933 | 2.7596 | 1.8599 | 0.1756 | 9.8041 | 0.0713 | 1.2289 | 0.0329 | 1.7502 | 0.0658 | 0.6584 | 0.0329 | 0.0000 | 0.0000 | 0.0000 | 0.3731 | 32.8304 | 27.1740 | 0.2359 | 15.3 | 2.5 | 0.728230 | 0.002614 | 0.570361 | 0.155255 | 3.278100e+07 | % |
95 | Maldives | 0.0000 | 29.7398 | 4.8409 | 0.0000 | 4.5092 | 3.2756 | 8.4068 | 0.4665 | 5.8360 | 0.4561 | 7.3909 | 0.0000 | 1.3683 | 0.0518 | 1.1713 | 0.0622 | 1.7207 | 0.0000 | 0.0000 | 4.9756 | 20.2550 | 4.9549 | 0.5183 | 7.9 | 10.3 | 3.078743 | 0.009982 | 2.690573 | 0.378189 | 5.410000e+05 | % |
96 | Mali | 0.0000 | 17.4631 | 1.2195 | 0.0000 | 12.0873 | 0.1327 | 0.4065 | 0.2987 | 5.6745 | 0.0249 | 9.7146 | 0.3152 | 3.3765 | 0.5475 | 0.1244 | 0.1327 | 0.0332 | 0.0000 | 0.0000 | 1.3357 | 32.5369 | 14.1945 | 0.3816 | 7.1 | 6.3 | 0.040294 | 0.001669 | 0.029895 | 0.008730 | 2.025100e+07 | % |
97 | Malta | 0.0000 | 29.3856 | 6.6557 | 0.0000 | 4.8786 | 1.3878 | 1.3074 | 0.2666 | 10.6541 | 0.0169 | 9.3298 | 0.0508 | 1.4978 | 0.0804 | 0.0804 | 0.0296 | 2.6783 | 0.0000 | 0.0000 | 1.1720 | 20.6144 | 9.3975 | 0.5162 | 31.0 | <2.5 | 3.558621 | 0.053448 | 3.045211 | 0.459962 | 5.220000e+05 | % |
98 | Mauritania | 0.0000 | 17.4021 | 1.7485 | 0.0000 | 4.3092 | 0.4337 | 0.5369 | 0.0895 | 5.7479 | 0.0688 | 8.6460 | 0.2822 | 0.5025 | 0.3373 | 0.0000 | 0.0207 | 0.1652 | 0.0000 | 0.0000 | 0.0000 | 32.6014 | 26.9567 | 0.1514 | 11.3 | 10.4 | 0.361118 | 0.009140 | 0.343763 | 0.008215 | 4.650000e+06 | % |
99 | Mauritius | 0.0000 | 12.8934 | 1.4559 | 0.0000 | 3.2471 | 0.7355 | 1.0457 | 0.1501 | 6.7594 | 0.1001 | 2.8418 | 0.0550 | 1.5660 | 0.2502 | 0.3452 | 0.0250 | 0.9856 | 0.0000 | 0.0000 | 0.2702 | 37.1041 | 29.9945 | 0.1751 | 11.5 | 6.5 | 0.046166 | 0.000791 | 0.042688 | 0.002688 | 1.265000e+06 | % |
100 | Mexico | 0.0000 | 23.7741 | 3.2525 | 0.0000 | 6.4604 | 2.2807 | 0.4661 | 0.5305 | 13.2133 | 0.0050 | 4.3433 | 0.2182 | 1.1850 | 0.2380 | 0.2529 | 0.0248 | 0.2033 | 0.0000 | 0.0000 | 0.7437 | 26.2234 | 16.3419 | 0.2429 | 28.4 | 3.6 | 1.507199 | 0.129731 | 1.159805 | 0.217663 | 1.277920e+08 | % |
101 | Mongolia | 0.0000 | 36.9018 | 5.5153 | 0.0000 | 2.7445 | 0.5930 | 0.0315 | 0.0420 | 21.0223 | 0.0525 | 9.0628 | 0.6717 | 0.1259 | 0.0105 | 0.0052 | 0.0420 | 1.6373 | 0.0000 | 0.0000 | 0.0787 | 13.0982 | 8.2231 | 0.1417 | 19.6 | 13.4 | 0.060190 | 0.000060 | 0.043112 | 0.017019 | 3.361000e+06 | % |
102 | Montenegro | 0.0000 | 32.7855 | 3.8887 | 0.0000 | 3.7312 | 1.1566 | 0.3473 | 0.3688 | 14.7778 | 0.1003 | 12.5363 | 0.0752 | 0.5837 | 0.0788 | 0.0430 | 0.0251 | 2.5531 | 0.0000 | 0.0000 | 0.8415 | 17.2163 | 8.6332 | 0.2578 | 24.9 | <2.5 | 10.408199 | 0.134405 | 9.039871 | 1.233923 | 6.220000e+05 | % |
103 | Morocco | 0.0000 | 15.4227 | 3.5807 | 0.0000 | 7.1539 | 1.1517 | 1.2329 | 0.7014 | 6.9989 | 0.0074 | 2.2296 | 0.2289 | 0.7309 | 0.1477 | 0.3987 | 0.0960 | 0.1993 | 0.0000 | 0.0000 | 1.9048 | 34.5736 | 22.9457 | 0.2953 | 25.6 | 3.4 | 1.321111 | 0.023312 | 1.262575 | 0.035225 | 3.595200e+07 | % |
104 | Mozambique | 0.0000 | 11.5910 | 1.1197 | 0.0000 | 8.8101 | 0.5537 | 0.8490 | 0.1846 | 6.8783 | 0.0369 | 2.0795 | 0.1107 | 1.1936 | 0.7014 | 0.0246 | 0.8490 | 0.0984 | 0.0000 | 0.0000 | 0.8244 | 38.4152 | 25.5199 | 0.1600 | 6.0 | 27.9 | 0.141539 | 0.001447 | 0.085959 | 0.054133 | 3.116600e+07 | % |
105 | Myanmar | 0.0000 | 26.0470 | 3.0066 | 0.0000 | 3.8192 | 0.9251 | 2.5441 | 0.2750 | 18.1335 | 0.0375 | 1.2814 | 0.1563 | 5.1194 | 0.6938 | 0.5313 | 0.0625 | 0.0250 | 0.0000 | 0.0813 | 0.2688 | 23.9530 | 12.7453 | 0.2938 | 5.7 | 10.6 | NaN | NaN | NaN | NaN | 5.470400e+07 | % |
106 | Namibia | 0.0000 | 16.7373 | 3.3171 | 0.0000 | 6.8020 | 0.2718 | 0.6075 | 0.2798 | 7.7772 | 0.0959 | 4.5480 | 0.2078 | 0.8792 | 0.4316 | 0.4236 | 0.5915 | 0.5995 | 0.0000 | 0.0000 | 0.1199 | 33.2667 | 22.9078 | 0.1359 | 15.0 | 27.3 | 1.371271 | 0.014601 | 1.312830 | 0.043841 | 2.541000e+06 | % |
107 | Nepal | 0.0000 | 12.1853 | 3.3076 | 0.0000 | 7.1664 | 0.4361 | 0.1563 | 0.5513 | 2.7069 | 0.0082 | 5.4139 | 0.1563 | 0.4525 | 0.5513 | 1.1437 | 0.1975 | 0.2468 | 0.1892 | 0.0000 | 0.5019 | 37.8147 | 26.2136 | 0.6006 | 3.8 | 8.7 | 0.906141 | 0.006784 | 0.892826 | 0.006531 | 2.999600e+07 | % |
108 | Netherlands | 0.0000 | 30.1494 | 6.6484 | 0.0000 | 1.2702 | 1.4787 | 0.7451 | 0.3475 | 10.8567 | 0.0000 | 10.3934 | 0.0270 | 0.3591 | 0.0309 | 0.1235 | 0.0849 | 0.0541 | 0.0000 | 0.0000 | 1.4980 | 19.8525 | 15.8449 | 0.2355 | 23.1 | <2.5 | 5.815292 | 0.082830 | 0.076063 | 5.656398 | 1.746700e+07 | % |
109 | New Caledonia | 0.0000 | 22.2697 | 3.6599 | 0.0000 | 5.0979 | 1.0439 | 0.8385 | 0.2222 | 11.6086 | 0.2851 | 5.0476 | 0.0755 | 3.3036 | 0.0293 | 0.0629 | 0.0335 | 1.3961 | 0.0000 | 0.0000 | 0.2557 | 27.7282 | 16.8532 | 0.1887 | NaN | 7.1 | NaN | NaN | NaN | NaN | 2.950000e+05 | % |
110 | New Zealand | 0.0000 | 34.1264 | 13.9753 | 0.0000 | 1.3271 | 1.2111 | 0.6485 | 0.3049 | 13.9409 | 0.0000 | 4.2948 | 0.0601 | 2.0228 | 0.0773 | 0.0859 | 0.0687 | 0.0945 | 0.0000 | 0.0000 | 1.3357 | 15.8736 | 10.2689 | 0.2835 | 32.0 | <2.5 | 0.046521 | 0.000501 | 0.044696 | 0.001323 | 4.987000e+06 | % |
111 | Nicaragua | 0.0000 | 17.9935 | 2.3309 | 0.0000 | 9.2369 | 1.0080 | 0.4174 | 0.1339 | 7.6069 | 0.1102 | 6.5123 | 0.1102 | 1.9214 | 0.4646 | 0.0079 | 0.1024 | 0.4252 | 0.0000 | 0.0000 | 0.0315 | 32.0104 | 19.3952 | 0.1811 | 21.8 | 17 | 0.095497 | 0.002577 | 0.064054 | 0.028866 | 6.596000e+06 | % |
112 | Niger | 0.0000 | 10.9769 | 2.6573 | 0.0000 | 12.4360 | 0.0580 | 0.1353 | 0.2416 | 3.6332 | 0.0097 | 4.3193 | 0.1836 | 13.4216 | 1.4398 | 0.3479 | 0.0483 | 0.0290 | 0.0000 | 0.0000 | 0.0000 | 39.0279 | 10.5904 | 0.4445 | 4.7 | 16.5 | 0.019009 | 0.000682 | 0.016330 | 0.001997 | 2.418900e+07 | % |
113 | Nigeria | 0.0000 | 5.0182 | 0.8078 | 0.0000 | 7.1082 | 0.5755 | 0.5957 | 0.3433 | 2.4838 | 0.0101 | 0.4645 | 0.0909 | 4.3922 | 0.4241 | 0.4746 | 1.2621 | 0.0404 | 0.0000 | 0.0000 | 0.2322 | 44.9818 | 30.1494 | 0.5452 | 7.8 | 13.4 | 0.067547 | 0.000799 | 0.054602 | 0.012146 | 2.061400e+08 | % |
114 | North Macedonia | 0.0000 | 19.6420 | 7.1263 | 0.0000 | 1.9013 | 0.7305 | 0.2371 | 0.4112 | 6.5409 | 0.0435 | 4.8476 | 0.1500 | 2.0174 | 0.1355 | 0.4886 | 0.0774 | 1.7078 | 0.0000 | 0.0000 | 1.1708 | 30.3628 | 21.6642 | 0.7450 | 23.9 | 3.2 | 4.548029 | 0.140192 | 4.025721 | 0.382115 | 2.080000e+06 | % |
115 | Norway | 0.0000 | 27.2211 | 6.4445 | 0.0000 | 1.9601 | 1.0645 | 1.5545 | 0.4055 | 10.6992 | 0.3244 | 7.4043 | 0.0541 | 1.7032 | 0.0912 | 0.0473 | 0.0473 | 1.6796 | 0.0000 | 0.0000 | 0.8888 | 22.7806 | 15.4642 | 0.1656 | 25.0 | <2.5 | 1.200167 | 0.010804 | 0.334101 | 0.855263 | 5.387000e+06 | % |
116 | Oman | 0.0000 | 23.6146 | 2.3712 | 0.0000 | 3.7744 | 1.4422 | 0.9290 | 0.7926 | 9.0171 | 0.0325 | 9.6407 | 0.2144 | 1.1174 | 0.1689 | 0.7276 | 0.0390 | 1.0979 | 0.0000 | 0.0000 | 0.6107 | 26.3821 | 17.4495 | 0.5782 | 22.9 | 6.8 | 2.865288 | 0.032506 | 2.700318 | 0.132463 | 4.713000e+06 | % |
117 | Pakistan | 0.0000 | 24.8245 | 8.9701 | 0.0000 | 4.2124 | 0.6203 | 0.0818 | 0.1227 | 3.4967 | 0.0068 | 11.5125 | 0.1431 | 1.0906 | 0.2726 | 0.2249 | 0.0341 | 0.0204 | 0.0613 | 0.0000 | 0.1909 | 25.1789 | 18.8603 | 0.0750 | 7.8 | 20.3 | 0.250961 | 0.005416 | 0.230941 | 0.014604 | 2.209400e+08 | % |
118 | Panama | 0.0000 | 25.9557 | 9.1864 | 0.0000 | 3.8355 | 0.8991 | 0.8614 | 0.5722 | 9.1046 | 0.1320 | 5.7281 | 0.1823 | 1.4273 | 0.1509 | 0.0377 | 0.0566 | 1.0375 | 0.0000 | 0.0000 | 0.4339 | 24.0317 | 16.2412 | 0.1258 | 22.5 | 10 | 7.622321 | 0.127364 | 6.773850 | 0.721107 | 4.283000e+06 | % |
119 | Paraguay | 0.0000 | 19.8084 | 3.8811 | 0.0000 | 4.9807 | 1.5622 | 0.1742 | 0.3974 | 10.2335 | 0.0272 | 3.7069 | 0.2558 | 2.0576 | 0.2123 | 0.0218 | 0.5552 | 0.5334 | 0.0000 | 0.0000 | 0.0163 | 30.1889 | 21.2672 | 0.1198 | 19.0 | 10.7 | 1.896664 | 0.038691 | 1.562591 | 0.295382 | 7.255000e+06 | % |
120 | Peru | 0.0000 | 18.0402 | 1.1055 | 0.0000 | 5.5879 | 2.1206 | 1.9497 | 1.6382 | 6.8241 | 0.0302 | 5.6080 | 0.4322 | 2.5628 | 0.6030 | 0.0704 | 0.6834 | 0.4523 | 0.0000 | 0.0000 | 0.2312 | 31.9598 | 19.6482 | 0.4523 | 19.1 | 9.7 | 3.573742 | 0.127751 | 3.310514 | 0.135477 | 3.282400e+07 | % |
121 | Philippines | 0.0000 | 29.7607 | 7.3714 | 0.0000 | 3.4748 | 1.0544 | 1.6045 | 0.7243 | 18.8870 | 0.0275 | 0.5684 | 0.2751 | 2.2371 | 0.0550 | 0.0642 | 0.2200 | 0.3576 | 0.0000 | 0.0183 | 0.7701 | 20.2439 | 11.9281 | 0.3576 | 6.0 | 13.3 | 0.488699 | 0.010139 | 0.445757 | 0.032803 | 1.095810e+08 | % |
122 | Poland | 0.0000 | 32.7460 | 12.3719 | 0.0000 | 1.6183 | 0.7141 | 0.4851 | 0.2057 | 13.3072 | 0.0000 | 5.8600 | 0.0078 | 0.4967 | 0.0310 | 0.0427 | 0.1087 | 0.0737 | 0.0000 | 0.0000 | 0.4385 | 17.2540 | 13.9747 | 0.2639 | 25.6 | <2.5 | 4.028175 | 0.101632 | 3.392335 | 0.534208 | 3.836800e+07 | % |
123 | Portugal | 0.0000 | 26.4556 | 9.5983 | 0.0000 | 2.1808 | 0.7993 | 1.0267 | 0.2825 | 10.3459 | 0.0138 | 4.5442 | 0.1378 | 0.4203 | 0.0689 | 0.0413 | 0.0586 | 1.3540 | 0.0000 | 0.0000 | 0.7648 | 23.5444 | 18.0803 | 0.2825 | 23.2 | <2.5 | 7.429605 | 0.136070 | 5.846836 | 1.446699 | 1.025500e+07 | % |
124 | Republic of Moldova | 0.0000 | 26.5244 | 6.8551 | 0.0000 | 2.5570 | 1.5517 | 0.6921 | 0.2987 | 9.7764 | 0.0656 | 7.5326 | 0.1238 | 0.2841 | 0.0291 | 0.0146 | 0.0874 | 0.8305 | 0.0000 | 0.0000 | 0.1093 | 23.4720 | 18.8388 | 0.3570 | 20.1 | NaN | 4.646195 | 0.099859 | 4.333692 | 0.212645 | 3.535000e+06 | % |
125 | Romania | 0.0000 | 27.4359 | 6.8987 | 0.0000 | 2.5519 | 1.5914 | 0.1994 | 0.2930 | 7.9894 | 0.0366 | 10.6349 | 0.1221 | 0.5495 | 0.0407 | 0.4965 | 0.1099 | 0.8506 | 0.0000 | 0.0000 | 0.6797 | 22.5600 | 16.5120 | 0.4477 | 24.5 | <2.5 | 3.863328 | 0.097755 | 3.583358 | 0.182215 | 1.924100e+07 | % |
126 | Russian Federation | 0.0000 | 27.9360 | 7.2000 | 0.0000 | 1.6511 | 1.9603 | 0.9415 | 0.2138 | 10.8433 | 0.0091 | 6.8453 | 0.1455 | 0.7823 | 0.0546 | 0.0273 | 0.1410 | 0.4184 | 0.0000 | 0.0000 | 0.1274 | 22.0640 | 18.3753 | 0.2638 | 25.7 | <2.5 | 2.663104 | 0.051120 | 2.316142 | 0.295842 | 1.467330e+08 | % |
127 | Rwanda | 0.0000 | 11.0727 | 1.0364 | 0.0000 | 4.8545 | 0.1636 | 0.6364 | 9.6727 | 5.2182 | 0.0182 | 3.7818 | 0.2364 | 3.6545 | 2.6909 | 0.0545 | 2.1636 | 0.0545 | 0.0000 | 0.0000 | 0.0182 | 38.9091 | 15.5091 | 0.2545 | 4.8 | 36.8 | 0.126135 | 0.001675 | 0.093013 | 0.031447 | 1.295200e+07 | % |
128 | Saint Kitts and Nevis | 0.0000 | 24.3013 | 4.7370 | 0.0000 | 2.0602 | 0.5600 | 0.7296 | 0.3596 | 14.3547 | 0.1439 | 3.7916 | 0.1233 | 2.9028 | 0.1541 | 0.2055 | 0.0462 | 0.1798 | 0.0000 | 0.0000 | 0.5189 | 25.7039 | 19.0043 | 0.1233 | 23.1 | NaN | 0.074074 | 0.000000 | 0.066667 | 0.007407 | 5.400000e+04 | % |
129 | Saint Lucia | 0.0000 | 33.3454 | 3.8130 | 0.0000 | 1.6712 | 0.5249 | 1.5867 | 0.3741 | 22.8778 | 0.1629 | 4.3137 | 0.2353 | 2.4012 | 0.1810 | 0.4163 | 0.0965 | 0.9894 | 0.0000 | 0.0000 | 0.5551 | 16.6516 | 9.6531 | 0.1508 | 19.8 | NaN | 0.996154 | 0.009890 | 0.480769 | 0.505495 | 1.820000e+05 | % |
130 | Saint Vincent and the Grenadines | 0.0000 | 24.4653 | 1.0850 | 0.0000 | 4.3274 | 0.7589 | 0.7150 | 0.7526 | 17.5290 | 0.2258 | 4.2521 | 0.1254 | 0.6773 | 0.2759 | 1.2919 | 0.1756 | 1.7184 | 0.0000 | 0.0000 | 0.4516 | 25.5315 | 15.3904 | 0.2509 | 23.8 | 5.7 | 1.082883 | 0.002703 | 0.361261 | 0.718919 | 1.110000e+05 | % |
131 | Samoa | 0.0000 | 21.6806 | 4.7780 | 0.0036 | 1.5771 | 0.2227 | 1.8968 | 0.6287 | 13.2418 | 0.0683 | 1.4693 | 0.0683 | 16.8666 | 0.0000 | 0.1150 | 0.3341 | 0.2910 | 0.0000 | 0.0000 | 0.0611 | 28.3194 | 8.3345 | 0.0431 | 45.5 | 2.7 | 0.001000 | 0.000000 | 0.001000 | 0.000000 | 2.000000e+05 | % |
132 | Sao Tome and Principe | 0.0000 | 7.3284 | 0.6241 | 0.0000 | 2.9864 | 0.1074 | 1.4361 | 1.2013 | 4.1809 | 0.0537 | 0.9731 | 0.0134 | 20.7704 | 0.1342 | 0.0336 | 0.1544 | 0.0738 | 0.0000 | 0.0000 | 0.0268 | 42.6616 | 17.1666 | 0.0738 | 10.6 | 7 | 0.643333 | 0.008571 | 0.504762 | 0.130000 | 2.100000e+05 | % |
133 | Saudi Arabia | 0.0000 | 15.3954 | 2.6475 | 0.0000 | 5.2126 | 0.9019 | 0.4122 | 0.4219 | 6.9243 | 0.0873 | 4.4125 | 0.0970 | 0.6207 | 0.1794 | 0.4800 | 0.0291 | 1.2510 | 0.0000 | 0.0000 | 0.7128 | 34.6070 | 25.4182 | 0.1891 | 35.0 | 7.1 | 1.055795 | 0.018256 | 1.030898 | 0.006641 | 3.504100e+07 | % |
134 | Senegal | 0.0000 | 6.1040 | 0.7876 | 0.0000 | 5.7374 | 0.2580 | 0.7129 | 0.0815 | 3.2319 | 0.0068 | 0.9845 | 0.1222 | 3.9041 | 0.1222 | 0.1697 | 0.0543 | 0.2037 | 0.0000 | 0.0000 | 0.3870 | 43.9028 | 33.0391 | 0.1901 | 7.4 | 11.3 | 0.170145 | 0.004031 | 0.139107 | 0.027007 | 1.674400e+07 | % |
135 | Serbia | 0.0000 | 33.0354 | 4.0698 | 0.0000 | 2.1213 | 1.5195 | 0.3396 | 0.5780 | 18.1385 | 0.0060 | 8.7594 | 0.2145 | 1.1262 | 0.0775 | 0.0834 | 0.0596 | 1.5016 | 0.0000 | 0.0000 | 0.9355 | 16.9646 | 10.1061 | 0.3635 | 23.5 | 5.7 | 5.840908 | 0.059106 | 0.000000 | 5.781803 | 6.957000e+06 | % |
136 | Sierra Leone | 0.0000 | 5.9931 | 0.1678 | 0.0000 | 3.2063 | 0.2983 | 1.2117 | 0.2610 | 2.0412 | 0.0373 | 2.1996 | 0.0746 | 4.8560 | 0.4660 | 0.2889 | 0.4474 | 0.0746 | 0.0000 | 0.0000 | 0.0559 | 44.0022 | 34.0479 | 0.2703 | 7.5 | 25.6 | 0.047286 | 0.000990 | 0.030738 | 0.015557 | 7.977000e+06 | % |
137 | Slovakia | 0.0000 | 25.4930 | 14.9373 | 0.0000 | 2.0003 | 1.1183 | 0.2331 | 0.1386 | 5.8496 | 0.0095 | 3.2697 | 0.0851 | 0.7686 | 0.0221 | 0.0599 | 0.0410 | 0.7655 | 0.0000 | 0.0000 | 0.4253 | 24.5070 | 20.1474 | 0.1292 | 22.4 | 3.4 | 4.792640 | 0.094013 | 4.361424 | 0.337202 | 5.462000e+06 | % |
138 | Slovenia | 0.0000 | 26.6163 | 10.0008 | 0.0000 | 3.5771 | 1.1287 | 0.3693 | 0.4606 | 8.5899 | 0.0622 | 6.4155 | 0.1120 | 0.8714 | 0.0415 | 0.1784 | 0.0539 | 2.4110 | 0.0000 | 0.0000 | 1.5852 | 23.3878 | 13.8684 | 0.2697 | 22.5 | <2.5 | 8.235901 | 0.171755 | 7.312934 | 0.751213 | 2.103000e+06 | % |
139 | Solomon Islands | 0.0000 | 13.6649 | 3.4726 | 0.0000 | 3.0802 | 0.2943 | 2.5505 | 0.5690 | 6.5431 | 0.0981 | 0.7553 | 0.0490 | 16.5686 | 0.5199 | 0.1962 | 2.1778 | 0.9810 | 0.0000 | 0.0000 | 0.3139 | 36.3351 | 11.7520 | 0.0785 | 20.5 | 8.9 | 0.002378 | 0.000000 | 0.001399 | 0.000979 | 7.150000e+05 | % |
140 | South Africa | 0.0000 | 19.7743 | 0.8542 | 0.0000 | 6.4308 | 1.0982 | 0.2379 | 0.0854 | 14.1489 | 0.0000 | 3.1056 | 0.3295 | 1.1836 | 0.0427 | 0.1037 | 0.0549 | 0.2807 | 0.0000 | 0.0000 | 0.0915 | 30.2257 | 21.7877 | 0.1647 | 27.0 | 6.2 | 2.471490 | 0.077447 | 2.248100 | 0.145943 | 5.962800e+07 | % |
141 | Spain | 0.0000 | 19.5253 | 2.4641 | 0.0000 | 1.0780 | 1.2521 | 1.0814 | 0.3750 | 9.2772 | 0.0000 | 5.3601 | 0.0937 | 1.0513 | 0.0971 | 0.0134 | 0.0469 | 0.4955 | 0.0000 | 0.0000 | 1.3626 | 30.4731 | 25.6922 | 0.2611 | 27.1 | <2.5 | 6.176110 | 0.128867 | 0.315684 | 5.731559 | 4.763500e+07 | % |
142 | Sri Lanka | 0.0000 | 10.1348 | 0.3195 | 0.0000 | 2.7159 | 1.1682 | 2.2766 | 0.5791 | 2.0270 | 0.0100 | 4.2336 | 0.0999 | 27.1892 | 0.3794 | 1.4279 | 0.0899 | 0.1198 | 0.0000 | 0.0100 | 0.4194 | 39.8602 | 6.7000 | 0.2396 | 5.4 | 9 | 0.312604 | 0.001600 | 0.285335 | 0.025669 | 2.193700e+07 | % |
143 | Sudan | 0.0000 | 20.1511 | 1.7092 | 0.0000 | 5.6998 | 0.2347 | 0.0587 | 0.3961 | 7.0789 | 0.0073 | 10.8055 | 0.2641 | 3.7265 | 0.4108 | 0.1174 | 0.0587 | 0.0587 | 0.0000 | 0.0000 | 0.0000 | 29.8489 | 19.0214 | 0.3521 | 7.4 | 20.1 | 0.067582 | 0.004176 | 0.049702 | 0.013704 | 4.384900e+07 | % |
144 | Suriname | 0.0000 | 14.8751 | 0.7849 | 0.0000 | 3.1593 | 0.9601 | 0.7720 | 0.2335 | 10.6390 | 0.1557 | 1.6867 | 0.0324 | 3.1139 | 0.0649 | 0.0584 | 0.1103 | 0.8823 | 0.0000 | 0.0000 | 0.1557 | 35.1281 | 26.9089 | 0.2789 | 26.5 | 8.5 | 1.429752 | 0.026446 | 1.318017 | 0.085289 | 6.050000e+05 | % |
145 | Sweden | 0.0000 | 28.4111 | 9.7148 | 0.0000 | 1.9481 | 1.3741 | 0.8778 | 0.3556 | 8.8481 | 0.0481 | 7.5926 | 0.0074 | 0.9519 | 0.0296 | 0.1111 | 0.0481 | 0.2333 | 0.0000 | 0.0000 | 0.9704 | 21.5852 | 16.6630 | 0.2296 | 22.1 | <2.5 | 5.666975 | 0.116749 | 0.000000 | 5.550226 | 1.037700e+07 | % |
146 | Switzerland | 0.0000 | 28.1054 | 6.2293 | 0.0000 | 1.1241 | 0.9300 | 0.4048 | 0.3379 | 12.0906 | 0.0000 | 8.3804 | 0.0703 | 0.5286 | 0.0268 | 0.0836 | 0.0368 | 0.1740 | 0.0000 | 0.0000 | 1.9772 | 21.8962 | 17.3898 | 0.2141 | 21.2 | <2.5 | 6.160215 | 0.111258 | 3.678480 | 2.370477 | 8.634000e+06 | % |
147 | Taiwan* | 0.0000 | 19.3217 | 2.6952 | 0.0000 | 1.1629 | 1.4818 | 0.4667 | 0.2956 | 13.2817 | 0.0194 | 1.3223 | 0.0700 | 2.8197 | 0.0506 | 0.1050 | 0.0194 | 0.4823 | 0.0000 | 0.0000 | 0.6145 | 30.6783 | 24.8016 | 0.3111 | NaN | 3.5 | 0.003914 | 0.000038 | 0.003571 | 0.000305 | 2.361000e+07 | % |
148 | Tajikistan | 0.0000 | 12.6827 | 0.0348 | 0.0000 | 10.2035 | 0.5741 | 0.0174 | 0.3566 | 7.1590 | 0.0348 | 4.6799 | 0.2175 | 1.2700 | 0.1131 | 0.0174 | 0.0783 | 1.1308 | 0.0000 | 0.0000 | 0.4175 | 37.3173 | 22.7557 | 0.9395 | 12.6 | NaN | 0.141139 | 0.000955 | 0.140185 | 0.000000 | 9.429000e+06 | % |
149 | Thailand | 0.0000 | 19.5718 | 1.6660 | 0.0000 | 2.5380 | 2.8961 | 1.7984 | 0.5060 | 11.6621 | 0.0078 | 1.4636 | 0.0934 | 4.6166 | 0.1012 | 1.7594 | 0.0701 | 0.1246 | 0.0000 | 0.0000 | 0.2647 | 30.4165 | 20.2336 | 0.2102 | 10.8 | 7.8 | 0.035126 | 0.000119 | 0.025464 | 0.009544 | 6.653400e+07 | % |
150 | Timor-Leste | 0.0000 | 17.8988 | 2.0345 | 0.0000 | 10.2168 | 0.2446 | 0.7893 | 1.3007 | 14.5525 | 0.1112 | 0.1779 | 0.0889 | 3.5353 | 0.2779 | 0.1445 | 0.1779 | 0.2001 | 0.0000 | 0.0000 | 0.0111 | 32.1067 | 15.9644 | 0.1668 | 2.9 | 24.9 | 0.006070 | 0.000000 | 0.004628 | 0.001442 | 1.318000e+06 | % |
151 | Togo | 0.0000 | 5.3063 | 0.5351 | 0.0000 | 8.9093 | 0.1962 | 0.5708 | 0.0624 | 3.3889 | 0.0803 | 0.5440 | 0.0713 | 2.9608 | 0.8918 | 0.2230 | 0.6064 | 0.1694 | 0.0000 | 0.0000 | 0.0000 | 44.6892 | 30.6430 | 0.1516 | 7.1 | 16.1 | 0.065660 | 0.000954 | 0.054777 | 0.009929 | 8.279000e+06 | % |
152 | Trinidad and Tobago | 0.0000 | 23.3455 | 5.3472 | 0.0000 | 2.5134 | 0.6185 | 0.7816 | 0.3205 | 11.3860 | 0.1012 | 5.1279 | 0.0843 | 3.1993 | 0.3430 | 0.4386 | 0.0843 | 0.4386 | 0.0000 | 0.0000 | 0.5960 | 26.6573 | 18.4369 | 0.1799 | 19.7 | 5.5 | 0.556026 | 0.009861 | 0.529949 | 0.016216 | 1.369000e+06 | % |
153 | Tunisia | 0.0000 | 12.7886 | 2.6543 | 0.0000 | 3.2543 | 0.9255 | 0.5085 | 0.4068 | 4.0323 | 0.0102 | 4.5764 | 0.0915 | 1.4085 | 0.2034 | 0.3407 | 0.0407 | 0.3000 | 0.0000 | 0.0000 | 2.3289 | 37.2114 | 28.1552 | 0.7627 | 27.3 | 4.3 | 1.817216 | 0.060205 | 1.453304 | 0.303707 | 1.189600e+07 | % |
154 | Turkey | 0.0000 | 13.6766 | 2.9392 | 0.0000 | 2.0428 | 0.8250 | 0.1428 | 0.3292 | 3.8475 | 0.0079 | 5.8586 | 0.0674 | 1.7453 | 0.3808 | 0.3729 | 0.0516 | 0.0912 | 0.0000 | 0.0000 | 2.8162 | 36.3175 | 27.8172 | 0.6703 | 32.2 | <2.5 | 3.015138 | 0.031868 | 2.881050 | 0.102220 | 8.373700e+07 | % |
155 | Turkmenistan | 0.0000 | 32.6886 | 6.4856 | 0.0000 | 2.9938 | 1.1060 | 0.1274 | 0.3069 | 17.4764 | 0.0347 | 7.4411 | 0.0521 | 0.3938 | 0.0405 | 0.0058 | 0.0521 | 1.0829 | 0.0000 | 0.0000 | 0.1969 | 17.3085 | 11.7610 | 0.4459 | 17.5 | 5.4 | NaN | NaN | NaN | NaN | 6.031000e+06 | % |
156 | Uganda | 0.0000 | 12.3139 | 0.9627 | 0.0000 | 3.4479 | 0.2239 | 0.8620 | 0.7164 | 6.1010 | 0.0112 | 4.0188 | 0.1343 | 6.5599 | 1.0411 | 0.0336 | 0.5709 | 0.1008 | 0.0000 | 0.0000 | 0.0000 | 37.6917 | 25.0532 | 0.1567 | 4.1 | 41 | 0.087058 | 0.000715 | 0.031370 | 0.054973 | 4.574100e+07 | % |
157 | Ukraine | 0.0000 | 26.9100 | 5.4940 | 0.0000 | 3.0837 | 2.4481 | 0.5160 | 0.3084 | 9.6350 | 0.0063 | 8.6910 | 0.1196 | 0.1007 | 0.0629 | 0.0378 | 0.2266 | 0.4972 | 0.0000 | 0.0000 | 0.7867 | 23.0900 | 17.4638 | 0.5223 | 26.1 | 3.5 | 3.075923 | 0.059206 | 2.653382 | 0.363335 | 4.177800e+07 | % |
158 | United Arab Emirates | 0.0000 | 21.4437 | 4.0036 | 0.0000 | 3.0418 | 1.1407 | 0.8108 | 0.6766 | 9.4610 | 0.1006 | 5.8600 | 0.1677 | 3.2040 | 1.0624 | 1.1295 | 0.0168 | 0.1454 | 0.0000 | 0.0000 | 3.8246 | 28.5563 | 14.9240 | 0.4306 | 29.9 | 2.6 | 3.307445 | 0.009348 | 3.079168 | 0.218930 | 9.778000e+06 | % |
159 | United Kingdom | 0.0000 | 25.8633 | 4.2615 | 0.0000 | 1.4678 | 1.0778 | 0.5176 | 0.4219 | 12.5789 | 0.0780 | 7.3530 | 0.0745 | 1.1664 | 0.0638 | 0.1276 | 0.0851 | 1.4642 | 0.0000 | 0.0000 | 0.7020 | 24.1332 | 18.3507 | 0.2127 | 29.5 | <2.5 | 5.868483 | 0.167220 | 0.015161 | 5.686102 | 6.716000e+07 | % |
160 | United Republic of Tanzania | 0.0000 | 7.5907 | 1.5442 | 0.0000 | 4.2140 | 0.0744 | 0.4558 | 0.2698 | 3.0140 | 0.0000 | 2.5023 | 0.0000 | 8.3628 | 1.0233 | 0.1302 | 0.7163 | 0.0279 | 0.0000 | 0.0000 | 0.3628 | 42.4093 | 27.0605 | 0.2419 | 7.1 | 30.7 | 0.000852 | 0.000035 | 0.000306 | 0.000511 | 5.973400e+07 | % |
161 | United States of America | 0.0000 | 21.2045 | 3.3013 | 0.0000 | 1.2829 | 1.2500 | 0.3887 | 0.4426 | 9.4166 | 0.0000 | 6.8359 | 0.0090 | 1.7464 | 0.0449 | 0.0867 | 0.0478 | 0.3977 | 0.0000 | 0.0000 | 0.9420 | 28.7970 | 23.6117 | 0.1944 | 37.3 | <2.5 | 8.159922 | 0.140103 | 0.000000 | 8.019819 | 3.298780e+08 | % |
162 | Uruguay | 0.0000 | 25.5069 | 3.4811 | 0.0000 | 2.5698 | 1.2804 | 0.3281 | 0.1777 | 12.2841 | 0.0456 | 8.0603 | 0.0729 | 1.5127 | 0.0729 | 0.0319 | 0.1002 | 0.7564 | 0.0000 | 0.0000 | 0.1367 | 24.4908 | 18.8819 | 0.2096 | 28.9 | <2.5 | 1.269102 | 0.013622 | 1.089465 | 0.166015 | 3.531000e+06 | % |
163 | Uzbekistan | 0.0000 | 25.9903 | 2.4884 | 0.0000 | 2.7168 | 1.0639 | 0.0962 | 0.5830 | 10.3624 | 0.0120 | 11.8050 | 0.1743 | 0.3366 | 0.0000 | 0.0180 | 0.0902 | 0.1683 | 0.0000 | 0.0000 | 0.7754 | 24.0067 | 18.4589 | 0.8535 | 15.3 | 6.3 | 0.231302 | 0.001817 | 0.226751 | 0.002733 | 3.417400e+07 | % |
164 | Vanuatu | 0.0000 | 14.9179 | 1.9531 | 0.0000 | 4.1249 | 0.3509 | 1.4343 | 0.3052 | 9.9334 | 0.0254 | 1.1495 | 0.0966 | 23.1779 | 0.0000 | 0.1068 | 0.4578 | 0.2187 | 0.0000 | 0.0000 | 0.0356 | 35.0847 | 6.4849 | 0.1424 | 23.5 | 7.2 | 0.000312 | 0.000000 | 0.000312 | 0.000000 | 3.210000e+05 | % |
165 | Venezuela (Bolivarian Republic of) | 0.0000 | 16.3261 | 2.2673 | 0.0000 | 2.5449 | 0.6555 | 0.5707 | 0.9640 | 7.0949 | 0.0077 | 5.5217 | 0.2082 | 0.1003 | 0.1157 | 0.0000 | 0.1311 | 0.0848 | 0.0000 | 0.0000 | 0.0154 | 33.6855 | 29.5211 | 0.1851 | 25.2 | 21.2 | 0.452585 | 0.004287 | 0.424399 | 0.023899 | 2.864500e+07 | % |
166 | Vietnam | 0.0000 | 33.2484 | 3.8238 | 0.0000 | 3.7155 | 0.7839 | 1.1217 | 0.4079 | 26.4292 | 0.0064 | 0.7520 | 0.3378 | 4.2891 | 0.0765 | 0.6309 | 0.0701 | 0.0829 | 0.0382 | 0.0000 | 1.1726 | 16.7548 | 5.6211 | 0.6373 | 2.1 | 9.3 | 0.002063 | 0.000036 | 0.001526 | 0.000501 | 9.620900e+07 | % |
167 | Yemen | 0.0000 | 12.5401 | 2.0131 | 0.0000 | 11.5271 | 0.5514 | 0.3847 | 0.2564 | 8.0010 | 0.0256 | 1.3463 | 0.2436 | 0.7565 | 0.5001 | 0.1026 | 0.0513 | 0.3718 | 0.0000 | 0.0000 | 0.0769 | 37.4535 | 23.6312 | 0.1667 | 14.1 | 38.9 | 0.007131 | 0.002062 | 0.004788 | 0.000282 | 2.982600e+07 | % |
168 | Zambia | 0.0783 | 9.6005 | 1.6113 | 0.0000 | 14.3225 | 0.6266 | 1.0070 | 0.1343 | 4.9010 | 0.0224 | 1.2756 | 0.1790 | 9.8915 | 0.0783 | 0.1567 | 0.2014 | 0.0671 | 0.0000 | 0.0000 | 0.0112 | 40.3939 | 15.2848 | 0.1567 | 6.5 | 46.7 | 0.334133 | 0.004564 | 0.290524 | 0.039045 | 1.838400e+07 | % |
169 | Zimbabwe | 0.0000 | 10.3796 | 2.9543 | 0.0000 | 9.7922 | 0.3682 | 0.2455 | 0.0614 | 4.5674 | 0.0175 | 2.1040 | 0.1315 | 1.9462 | 0.1140 | 0.0526 | 0.0877 | 0.1052 | 0.0000 | 0.0000 | 0.4296 | 39.6248 | 26.9396 | 0.0789 | 12.3 | 51.3 | 0.232033 | 0.008854 | 0.190964 | 0.032214 | 1.486300e+07 | % |
Food Supply Quantity Dataset
# Read the csv file on Covid 19 Data in the United States
covid_food_df = pd.read_csv("Food_Supply_Quantity_kg_Data.csv")
# Order all the Countries in the 'Country' column by alphabetical order
covid_food_df = covid_food_df.sort_values('Country', ascending = True)
# Print all the columns of the dataset
pd.set_option('display.max_columns', None)
# Print all the rows of the dataset
pd.set_option('display.max_rows', None)
# Print out dataset
covid_food_df
Country | Alcoholic Beverages | Animal fats | Animal Products | Aquatic Products, Other | Cereals - Excluding Beer | Eggs | Fish, Seafood | Fruits - Excluding Wine | Meat | Milk - Excluding Butter | Miscellaneous | Offals | Oilcrops | Pulses | Spices | Starchy Roots | Stimulants | Sugar & Sweeteners | Sugar Crops | Treenuts | Vegetable Oils | Vegetables | Vegetal Products | Obesity | Undernourished | Confirmed | Deaths | Recovered | Active | Population | Unit (all except Population) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Afghanistan | 0.0014 | 0.1973 | 9.4341 | 0.0000 | 24.8097 | 0.2099 | 0.0350 | 5.3495 | 1.2020 | 7.5828 | 0.0728 | 0.2057 | 0.0700 | 0.2953 | 0.0574 | 0.8802 | 0.3078 | 1.3489 | 0.0000 | 0.0770 | 0.5345 | 6.7642 | 40.5645 | 4.5 | 29.8 | 0.142134 | 0.006186 | 0.123374 | 0.012574 | 3.892800e+07 | % |
1 | Albania | 1.6719 | 0.1357 | 18.7684 | 0.0000 | 5.7817 | 0.5815 | 0.2126 | 6.7861 | 1.8845 | 15.7213 | 0.1123 | 0.2324 | 0.9377 | 0.2380 | 0.0008 | 1.8096 | 0.1055 | 1.5367 | 0.0000 | 0.1515 | 0.3261 | 11.7753 | 31.2304 | 22.3 | 6.2 | 2.967301 | 0.050951 | 1.792636 | 1.123714 | 2.838000e+06 | % |
2 | Algeria | 0.2711 | 0.0282 | 9.6334 | 0.0000 | 13.6816 | 0.5277 | 0.2416 | 6.3801 | 1.1305 | 7.6189 | 0.1671 | 0.0870 | 0.3493 | 0.4783 | 0.0557 | 4.1340 | 0.2216 | 1.8342 | 0.0000 | 0.1152 | 1.0310 | 11.6484 | 40.3651 | 26.6 | 3.9 | 0.244897 | 0.006558 | 0.167572 | 0.070767 | 4.435700e+07 | % |
3 | Angola | 5.8087 | 0.0560 | 4.9278 | 0.0000 | 9.1085 | 0.0587 | 1.7707 | 6.0005 | 2.0571 | 0.8311 | 0.1165 | 0.1550 | 0.4186 | 0.6507 | 0.0009 | 18.1102 | 0.0508 | 1.8495 | 0.0000 | 0.0061 | 0.6463 | 2.3041 | 45.0722 | 6.8 | 25 | 0.061687 | 0.001461 | 0.056808 | 0.003419 | 3.252200e+07 | % |
4 | Antigua and Barbuda | 3.5764 | 0.0087 | 16.6613 | 0.0000 | 5.9960 | 0.2274 | 4.1489 | 10.7451 | 5.6888 | 6.3663 | 0.7139 | 0.2219 | 0.2172 | 0.1840 | 0.1524 | 1.4522 | 0.1564 | 3.8749 | 0.0000 | 0.0253 | 0.8102 | 5.4495 | 33.3233 | 19.1 | NaN | 0.293878 | 0.007143 | 0.190816 | 0.095918 | 9.800000e+04 | % |
5 | Argentina | 4.2672 | 0.2234 | 19.3454 | 0.0000 | 8.4102 | 0.9979 | 0.4693 | 6.0435 | 7.0421 | 10.2328 | 0.0000 | 0.3779 | 0.0116 | 0.0528 | 0.0122 | 3.0420 | 0.4378 | 3.0536 | 0.0000 | 0.0200 | 0.9541 | 4.3503 | 30.6559 | 28.5 | 4.6 | 4.356147 | 0.108227 | 3.905192 | 0.342729 | 4.537700e+07 | % |
6 | Armenia | 0.4014 | 0.1833 | 13.5640 | 0.0000 | 7.2982 | 0.5783 | 0.2896 | 6.0989 | 2.2675 | 9.9407 | 0.2355 | 0.3040 | 0.0899 | 0.1441 | 0.0055 | 2.0359 | 0.1863 | 2.6579 | 0.0000 | 0.1108 | 0.4705 | 16.7019 | 36.4358 | 20.9 | 4.3 | 5.681225 | 0.105345 | 5.398410 | 0.177470 | 2.956000e+06 | % |
7 | Australia | 5.5436 | 0.3143 | 21.4175 | 0.0033 | 5.4979 | 0.4428 | 1.4264 | 4.1883 | 6.7049 | 12.1018 | 0.5293 | 0.4240 | 0.3694 | 0.0546 | 0.0458 | 2.7884 | 0.2928 | 2.5364 | 0.0000 | 0.3176 | 1.2798 | 5.1406 | 28.5806 | 30.4 | <2.5 | 0.112025 | 0.003530 | 0.101289 | 0.007207 | 2.575400e+07 | % |
8 | Austria | 7.0215 | 0.8555 | 19.5654 | 0.0011 | 6.2116 | 0.7884 | 0.7562 | 4.6069 | 4.6810 | 12.3776 | 0.0005 | 0.1052 | 0.2683 | 0.0456 | 0.0494 | 3.0548 | 0.4106 | 2.6094 | 0.0000 | 0.2367 | 0.8109 | 5.1098 | 30.4338 | 21.9 | <2.5 | 4.739982 | 0.089679 | 4.496870 | 0.153433 | 8.914000e+06 | % |
9 | Azerbaijan | 3.5969 | 0.2544 | 11.6416 | 0.0000 | 13.0898 | 0.5593 | 0.2020 | 4.7988 | 2.1513 | 8.3212 | 0.0145 | 0.1534 | 0.0145 | 0.0347 | 0.0044 | 4.7041 | 0.0587 | 1.5523 | 0.0000 | 0.1906 | 0.2235 | 10.0755 | 38.3584 | 19.9 | <2.5 | 2.285536 | 0.031223 | 2.225574 | 0.028740 | 1.010800e+07 | % |
10 | Bahamas | 2.0175 | 0.0062 | 11.4718 | 0.0009 | 3.7246 | 0.6250 | 2.4144 | 13.2718 | 5.9269 | 2.1757 | 2.9316 | 0.3218 | 0.6993 | 0.0504 | 0.0884 | 1.0547 | 0.1556 | 6.2151 | 0.0000 | 0.0495 | 0.5110 | 7.7649 | 38.5229 | 32.1 | NaN | 2.100763 | 0.044784 | 1.735115 | 0.320865 | 3.930000e+05 | % |
11 | Bangladesh | 0.0031 | 0.0156 | 5.1926 | 0.0000 | 29.8045 | 0.2957 | 2.5221 | 2.8655 | 0.4191 | 1.8778 | 0.0197 | 0.0633 | 0.0820 | 0.7065 | 0.3195 | 5.3378 | 0.0529 | 0.9285 | 0.1950 | 0.0934 | 0.7615 | 3.6405 | 44.8033 | 3.4 | 14.7 | 0.316691 | 0.004823 | 0.284344 | 0.027524 | 1.698090e+08 | % |
12 | Barbados | 3.5650 | 0.2212 | 12.4976 | 0.0000 | 8.0666 | 0.7792 | 3.2750 | 5.8723 | 5.8477 | 2.2041 | 3.3020 | 0.1704 | 0.8734 | 0.6391 | 0.1565 | 4.0812 | 0.1721 | 4.3344 | 0.0000 | 0.0852 | 0.8677 | 5.4725 | 37.5167 | 24.8 | 3.9 | 0.583972 | 0.006272 | 0.470035 | 0.107666 | 2.870000e+05 | % |
13 | Belarus | 3.7563 | 0.3353 | 12.7089 | 0.0000 | 6.2814 | 0.7565 | 0.8372 | 3.5665 | 4.1893 | 6.2104 | 0.5035 | 0.3795 | 0.0720 | 0.0010 | 0.0067 | 9.1691 | 0.1142 | 4.0155 | 0.0000 | 0.1399 | 0.8804 | 8.7859 | 37.2904 | 26.6 | <2.5 | 2.740896 | 0.018912 | 2.612704 | 0.109280 | 9.375000e+06 | % |
14 | Belgium | 5.3730 | 0.8559 | 17.7279 | 0.0010 | 6.6704 | 0.6487 | 1.1325 | 4.1623 | 3.2370 | 11.6344 | 0.0000 | 0.2185 | 0.0965 | 0.1132 | 0.0409 | 4.4157 | 0.2461 | 3.6514 | 0.0000 | 0.1309 | 0.5640 | 6.8161 | 32.2637 | 24.5 | <2.5 | 6.286322 | 0.185428 | 0.000000 | 6.100894 | 1.151500e+07 | % |
15 | Belize | 3.3803 | 0.0832 | 8.6856 | 0.0000 | 11.0700 | 0.3923 | 1.0325 | 12.6094 | 3.4890 | 3.6317 | 1.7653 | 0.0569 | 0.3940 | 1.1259 | 0.0195 | 1.0614 | 0.0849 | 3.9798 | 0.0000 | 0.0340 | 1.0198 | 4.7721 | 41.3122 | 22.4 | 7.5 | 2.872792 | 0.073031 | 2.739618 | 0.060143 | 4.190000e+05 | % |
16 | Benin | 5.9019 | 0.0132 | 3.7504 | 0.0000 | 9.6230 | 0.0711 | 1.2267 | 2.9523 | 1.4107 | 0.9458 | 0.1450 | 0.0829 | 0.6628 | 0.7367 | 0.4461 | 19.7771 | 0.0042 | 0.6635 | 0.0000 | 0.4028 | 0.7381 | 4.1964 | 46.2493 | 8.2 | 10.1 | 0.034344 | 0.000450 | 0.029183 | 0.004710 | 1.220900e+07 | % |
17 | Bolivia | 2.8956 | 0.0889 | 11.7799 | 0.0000 | 12.3079 | 0.6626 | 0.2307 | 7.5088 | 6.4098 | 4.2873 | 0.1661 | 0.1006 | 0.1374 | 0.3654 | 0.0422 | 7.7315 | 0.2083 | 2.5724 | 0.0000 | 0.7084 | 0.3573 | 3.2224 | 38.2165 | 18.7 | 17.1 | 1.952446 | 0.092435 | 1.438614 | 0.421396 | 1.163300e+07 | % |
18 | Bosnia and Herzegovina | 4.7876 | 0.0585 | 12.4319 | 0.0000 | 8.7152 | 0.2576 | 0.2465 | 4.6409 | 1.8165 | 9.9443 | 0.4860 | 0.1089 | 0.0963 | 0.2718 | 0.3922 | 4.0495 | 0.3504 | 1.6391 | 0.0000 | 0.0822 | 0.4205 | 11.6394 | 37.5645 | 19.4 | <2.5 | 3.762085 | 0.145535 | 2.960317 | 0.656233 | 3.281000e+06 | % |
19 | Botswana | 4.2717 | 0.3402 | 14.4486 | 0.0000 | 11.4320 | 0.1402 | 0.3551 | 2.8465 | 2.2840 | 11.0217 | 1.6092 | 0.3056 | 0.2019 | 0.2729 | 0.1626 | 4.7614 | 0.1336 | 4.7857 | 0.0009 | 0.0150 | 1.0065 | 4.0558 | 35.5491 | 16.1 | 26.4 | 1.014372 | 0.007035 | 0.844799 | 0.162538 | 2.317000e+06 | % |
20 | Brazil | 4.3629 | 0.2803 | 17.3470 | 0.0000 | 8.4292 | 0.5042 | 0.5899 | 6.0936 | 6.4784 | 9.3416 | 0.0006 | 0.1512 | 0.7093 | 0.9254 | 0.0071 | 3.3959 | 0.3024 | 2.7755 | 1.0111 | 0.0513 | 1.2823 | 3.3070 | 32.6537 | 22.3 | <2.5 | 4.460165 | 0.108603 | 3.979469 | 0.372094 | 2.118120e+08 | % |
21 | Bulgaria | 7.0834 | 0.2488 | 17.2483 | 0.0103 | 8.8750 | 0.5924 | 0.4845 | 3.9812 | 4.0073 | 11.5992 | 0.2254 | 0.3058 | 0.3450 | 0.1512 | 0.6048 | 1.8576 | 0.2818 | 2.3627 | 0.0000 | 0.0797 | 0.7085 | 6.2037 | 32.7435 | 27.4 | 3.6 | 3.227256 | 0.134416 | 2.788956 | 0.303883 | 6.927000e+06 | % |
22 | Burkina Faso | 15.3706 | 0.0231 | 4.6611 | 0.0000 | 21.2005 | 0.2406 | 0.7077 | 0.6596 | 1.2029 | 2.3195 | 0.1373 | 0.1664 | 1.8664 | 1.4294 | 0.0321 | 0.9723 | 0.0211 | 1.1287 | 0.0000 | 0.0712 | 0.9503 | 1.5036 | 45.3359 | 4.5 | 20 | 0.053710 | 0.000641 | 0.048031 | 0.005038 | 2.090300e+07 | % |
23 | Cabo Verde | 3.9814 | 0.0363 | 9.7559 | 0.0029 | 14.7961 | 0.4602 | 1.0598 | 4.6402 | 3.0725 | 5.0192 | 1.1190 | 0.1050 | 0.5394 | 1.1390 | 0.2731 | 3.8430 | 0.1671 | 2.1396 | 0.0000 | 0.0258 | 0.9471 | 6.6338 | 40.2437 | 10.6 | 12.6 | 2.586331 | 0.024281 | 2.461151 | 0.100899 | 5.560000e+05 | % |
24 | Cambodia | 4.5783 | 0.0377 | 6.0800 | 0.0000 | 24.8906 | 0.1310 | 4.2369 | 2.3184 | 1.2247 | 0.3285 | 0.4853 | 0.1211 | 0.7900 | 0.4903 | 0.0784 | 3.0519 | 0.1260 | 2.9923 | 0.8367 | 0.0238 | 0.2511 | 3.0072 | 43.9195 | 3.5 | 16.4 | 0.003059 | 0.000000 | 0.002930 | 0.000129 | 1.549700e+07 | % |
25 | Cameroon | 5.1560 | 0.0146 | 2.9330 | 0.0000 | 10.3112 | 0.0256 | 1.3206 | 7.2151 | 0.8760 | 0.6289 | 0.0717 | 0.0673 | 0.8658 | 1.4734 | 0.2830 | 11.3883 | 0.0234 | 0.6479 | 0.0000 | 0.1324 | 0.6398 | 8.8590 | 47.0670 | 9.5 | 9.9 | 0.118031 | 0.001782 | 0.110914 | 0.005335 | 2.659800e+07 | % |
26 | Canada | 4.8441 | 0.8084 | 16.0365 | 0.0060 | 6.4236 | 0.7668 | 1.2148 | 5.0692 | 4.4707 | 8.7596 | 0.6071 | 0.0097 | 0.4334 | 0.6304 | 0.0574 | 3.4940 | 0.4053 | 5.0237 | 0.0000 | 0.1439 | 1.3441 | 5.4961 | 33.9551 | 31.3 | <2.5 | 2.109961 | 0.054203 | 1.909848 | NaN | 3.819000e+07 | % |
27 | Central African Republic | 1.7435 | 0.1228 | 6.9032 | 0.0000 | 3.8844 | 0.0510 | 0.8041 | 4.5543 | 3.7346 | 1.7581 | 0.0614 | 0.4338 | 0.6970 | 0.8936 | 0.0031 | 27.7128 | 0.2008 | 0.7022 | 0.0000 | 0.0000 | 0.7240 | 1.9214 | 43.0942 | 6.3 | 59.6 | 0.103292 | 0.001304 | 0.101139 | 0.000849 | 4.830000e+06 | % |
28 | Chad | 0.8297 | 0.2023 | 12.2804 | 0.0000 | 21.6017 | 0.0495 | 1.0451 | 1.0669 | 3.8543 | 5.9037 | 0.0640 | 1.2256 | 3.0304 | 1.4133 | 0.0000 | 6.9910 | 0.0087 | 1.3449 | 0.0000 | 0.0000 | 0.4556 | 0.9141 | 37.7189 | 4.8 | 37.5 | 0.020578 | 0.000741 | 0.016881 | 0.002957 | 1.687700e+07 | % |
29 | Chile | 4.9690 | 0.1782 | 15.0394 | 0.0155 | 10.8579 | 0.7757 | 0.8711 | 3.9109 | 6.1492 | 6.9966 | 0.3024 | 0.0525 | 0.2588 | 0.2677 | 0.0133 | 4.7183 | 0.1353 | 3.5582 | 0.0000 | 0.1190 | 0.5435 | 5.3092 | 34.9584 | 28.8 | 2.7 | 3.842229 | 0.097047 | 3.626194 | NaN | 1.947000e+07 | % |
30 | China | 2.3224 | 0.0866 | 13.4240 | 0.0542 | 8.9298 | 1.2059 | 3.3435 | 4.2451 | 6.0732 | 1.7962 | 1.3773 | 0.8643 | 0.4401 | 0.0704 | 0.0364 | 1.9016 | 0.1781 | 3.1065 | 0.0253 | 0.2665 | 0.5790 | 13.0990 | 36.5744 | 6.6 | 8.5 | 0.007156 | 0.000344 | 0.006685 | 0.000126 | 1.402385e+09 | % |
31 | Colombia | 3.1032 | 0.0814 | 12.8210 | 0.0000 | 8.1055 | 0.8132 | 0.4552 | 11.3276 | 3.5540 | 7.7443 | 0.0776 | 0.1729 | 0.2276 | 0.3503 | 0.0343 | 5.0309 | 0.0057 | 4.7518 | 0.0280 | 0.0947 | 0.9454 | 3.0981 | 37.1774 | 22.1 | 4.8 | 4.350795 | 0.112639 | 4.090144 | 0.148012 | 4.944400e+07 | % |
32 | Congo | 4.9612 | 0.0122 | 6.1258 | 0.0000 | 6.2564 | 0.0457 | 2.3945 | 4.0015 | 3.2735 | 0.0963 | 0.1730 | 0.3044 | 0.3632 | 0.2408 | 0.0033 | 23.2457 | 0.0171 | 1.3907 | 0.0000 | 0.0016 | 0.6700 | 2.5520 | 43.8709 | 8.4 | 40.3 | 0.571675 | 0.014516 | 0.379721 | 0.177437 | 5.518000e+06 | % |
33 | Costa Rica | 1.6982 | 0.1529 | 18.6770 | 0.0007 | 8.6611 | 0.7582 | 1.3317 | 9.5203 | 3.8631 | 12.4535 | 0.0274 | 0.1161 | 0.2914 | 0.8354 | 0.0433 | 1.5676 | 0.3181 | 3.9006 | 0.0000 | 0.0397 | 1.4363 | 2.9837 | 31.3238 | 25.7 | 4.8 | 3.843436 | 0.052279 | 3.055782 | 0.735375 | 5.111000e+06 | % |
34 | Cote d'Ivoire | 1.4487 | 0.0132 | 2.9144 | 0.0000 | 11.4585 | 0.1587 | 1.3914 | 4.8741 | 0.9586 | 0.1285 | 0.0163 | 0.2648 | 0.6055 | 0.1727 | 0.1247 | 23.3080 | 0.0759 | 0.7859 | 0.0000 | 0.5443 | 0.8656 | 2.8098 | 47.0806 | 9.0 | 19 | 0.112959 | 0.000619 | 0.106105 | 0.006235 | 2.617500e+07 | % |
35 | Croatia | 4.9846 | 0.2296 | 17.3110 | 0.0005 | 5.7726 | 0.3955 | 0.9196 | 3.4094 | 3.6945 | 11.8824 | 0.0000 | 0.1889 | 0.3494 | 0.0373 | 0.0236 | 1.8078 | 0.2458 | 3.0880 | 0.0000 | 0.0761 | 0.3808 | 12.5188 | 32.6838 | 27.1 | <2.5 | 5.848905 | 0.127960 | 5.648706 | 0.072239 | 4.020000e+06 | % |
36 | Cuba | 2.0589 | 0.1202 | 10.0096 | 0.0000 | 9.9309 | 0.5263 | 0.3368 | 9.0347 | 3.2837 | 5.5971 | 0.0787 | 0.1456 | 0.5346 | 1.1336 | 0.0089 | 5.1555 | 0.0657 | 3.1617 | 0.0000 | 0.0006 | 0.4535 | 8.3740 | 39.9895 | 26.7 | <2.5 | 0.283760 | 0.002065 | 0.230822 | 0.050873 | 1.128100e+07 | % |
37 | Cyprus | 3.4447 | 0.0277 | 16.1736 | 0.0015 | 7.0646 | 0.5746 | 1.8209 | 6.1980 | 5.3167 | 8.2744 | 1.4858 | 0.1584 | 0.4089 | 0.2110 | 0.0307 | 1.7705 | 0.2387 | 4.2194 | 0.0000 | 0.1781 | 1.1937 | 7.3888 | 33.8191 | 22.6 | 5.6 | 2.621707 | 0.017481 | 0.170423 | 2.433803 | 1.207000e+06 | % |
38 | Czechia | 9.8498 | 0.8945 | 17.8065 | 0.0006 | 5.6937 | 0.4964 | 0.5355 | 3.3962 | 4.7618 | 10.9830 | 0.1099 | 0.1340 | 0.0949 | 0.1139 | 0.0316 | 3.3991 | 0.1340 | 3.8081 | 0.0000 | 0.0477 | 0.9854 | 4.5289 | 32.1944 | 28.5 | <2.5 | 9.612841 | 0.159845 | 8.555328 | 0.897667 | 1.071600e+07 | % |
39 | Denmark | 4.8866 | 1.2415 | 23.2141 | 0.0010 | 6.7226 | 0.8206 | 1.1797 | 3.1098 | 3.6804 | 15.9557 | 0.0000 | 0.3347 | 0.1185 | 0.0369 | 0.0774 | 3.1113 | 0.4069 | 2.8728 | 0.0000 | 0.1138 | 0.0915 | 5.2431 | 26.7812 | 21.3 | <2.5 | 3.463218 | 0.038017 | 3.307360 | 0.117842 | 5.829000e+06 | % |
40 | Djibouti | 0.3778 | 0.0579 | 5.5215 | 0.0000 | 20.2702 | 0.1275 | 0.4276 | 3.2735 | 1.7428 | 2.9085 | 1.1831 | 0.2572 | 0.0568 | 1.5724 | 0.1506 | 1.8633 | 0.1309 | 4.2005 | 0.0000 | 0.0406 | 1.6153 | 9.7637 | 44.4582 | 12.2 | 18.9 | 0.601316 | 0.006377 | 0.592308 | 0.002632 | 9.880000e+05 | % |
41 | Dominica | 0.9410 | 0.0319 | 8.9011 | 0.0000 | 3.4014 | 0.1244 | 1.4188 | 19.3028 | 2.7820 | 4.4217 | 0.6745 | 0.1219 | 1.1058 | 0.2255 | 0.1512 | 6.8477 | 0.2553 | 3.1738 | 0.0000 | 0.0035 | 0.3797 | 4.6371 | 41.0989 | 28.2 | 6.2 | 0.168056 | 0.000000 | 0.152778 | 0.015278 | 7.200000e+04 | % |
42 | Dominican Republic | 3.2100 | 0.1122 | 11.2417 | 0.0006 | 6.9232 | 0.6445 | 0.6059 | 18.4431 | 3.5009 | 6.1202 | 0.0906 | 0.2567 | 1.1395 | 0.5881 | 0.0260 | 2.0198 | 0.1420 | 2.1332 | 0.0000 | 0.0108 | 1.2948 | 2.7385 | 38.7577 | 26.9 | 9.5 | 2.115695 | 0.026676 | 1.577705 | 0.511314 | 1.050000e+07 | % |
43 | Ecuador | 3.2929 | 0.1277 | 15.3469 | 0.0328 | 14.9132 | 0.6902 | 0.6893 | 8.0390 | 4.0115 | 9.5745 | 0.1526 | 0.2200 | 0.1765 | 0.1570 | 0.0177 | 2.2701 | 0.0071 | 1.7370 | 0.0000 | 0.0160 | 1.3777 | 2.4981 | 34.6522 | 19.3 | 7.9 | 1.468306 | 0.085683 | 1.198184 | 0.184438 | 1.751100e+07 | % |
44 | Egypt | 0.0722 | 0.0896 | 6.7374 | 0.0000 | 17.5311 | 0.2307 | 1.5844 | 6.9387 | 1.7583 | 2.7568 | 0.0187 | 0.3170 | 0.6541 | 0.3063 | 0.0655 | 2.6919 | 0.0863 | 1.7984 | 2.0338 | 0.0268 | 0.3839 | 10.6559 | 43.2622 | 31.1 | 4.5 | 0.167759 | 0.009527 | 0.131002 | 0.027229 | 1.008030e+08 | % |
45 | El Salvador | 2.1651 | 0.1113 | 12.8880 | 0.0000 | 11.7265 | 0.7533 | 0.5730 | 5.9517 | 2.6337 | 8.7381 | 0.5920 | 0.0794 | 1.4273 | 1.4661 | 0.0121 | 2.2462 | 0.2649 | 3.5260 | 0.0000 | 0.0155 | 0.4565 | 7.2703 | 37.1029 | 22.7 | 9 | 0.867721 | 0.025814 | 0.778136 | 0.063771 | 6.481000e+06 | % |
46 | Estonia | 6.1949 | 0.4556 | 22.3154 | 0.0005 | 6.3498 | 0.6145 | 0.7127 | 3.5061 | 3.0810 | 17.3068 | 0.1501 | 0.1457 | 0.0518 | 0.1472 | 0.0576 | 3.2403 | 0.2121 | 2.3886 | 0.0000 | 0.0886 | 0.3472 | 4.9558 | 27.6779 | 23.8 | 2.9 | 3.569647 | 0.034260 | 2.828550 | 0.706837 | 1.331000e+06 | % |
47 | Eswatini | 6.2239 | 0.1024 | 7.4118 | 0.0019 | 14.7814 | 0.1578 | 0.3643 | 8.5537 | 2.5917 | 3.9299 | 0.6695 | 0.2620 | 0.3005 | 0.3578 | 0.1615 | 5.3187 | 0.0648 | 3.1796 | 0.0000 | 0.0892 | 0.3258 | 2.5701 | 42.5816 | 13.5 | 20.6 | 1.465670 | 0.054710 | 1.038859 | 0.372101 | 1.104000e+06 | % |
48 | Ethiopia | 2.4543 | 0.0276 | 5.2956 | 0.0000 | 22.0779 | 0.0594 | 0.0608 | 1.1774 | 0.7462 | 4.2647 | 0.0180 | 0.1382 | 0.2322 | 3.0195 | 0.4298 | 11.2918 | 0.2957 | 1.3170 | 0.0000 | 0.0802 | 0.4699 | 1.8449 | 44.6989 | 3.6 | 20.6 | 0.123093 | 0.001867 | 0.109237 | 0.011989 | 1.149160e+08 | % |
49 | Fiji | 1.8598 | 0.2922 | 7.8511 | 0.0021 | 10.1440 | 0.2682 | 2.3832 | 2.1636 | 3.0004 | 1.7421 | 0.2586 | 0.1642 | 4.3799 | 0.7746 | 0.0500 | 7.8599 | 0.1238 | 9.7259 | 0.0000 | 0.0157 | 0.8683 | 3.9255 | 42.1469 | 30.0 | 3.7 | 0.006250 | 0.000223 | 0.005915 | 0.000112 | 8.960000e+05 | % |
50 | Finland | 4.5004 | 0.5190 | 26.8865 | 0.0000 | 5.1978 | 0.3979 | 1.5306 | 3.1864 | 3.4915 | 20.8378 | 0.7944 | 0.1097 | 0.0883 | 0.0533 | 0.0168 | 2.7671 | 0.5450 | 1.8388 | 0.0000 | 0.0460 | 0.2468 | 3.8325 | 23.1132 | 24.9 | <2.5 | 0.854802 | 0.012443 | 0.560680 | 0.281678 | 5.529000e+06 | % |
51 | France | 4.1631 | 0.7907 | 21.7097 | 0.0011 | 6.9951 | 0.6110 | 1.8214 | 4.8780 | 4.4005 | 13.7840 | 0.1918 | 0.3010 | 0.1479 | 0.0991 | 0.0164 | 2.6963 | 0.2925 | 2.6110 | 0.0000 | 0.2093 | 0.8675 | 5.1223 | 28.2903 | 23.2 | <2.5 | 5.199055 | 0.121558 | 0.367877 | 4.709620 | 6.494000e+07 | % |
52 | French Polynesia | 4.6997 | 0.0309 | 14.3585 | 0.0169 | 7.6479 | 0.5386 | 3.4809 | 4.3512 | 7.0798 | 2.9364 | 3.2613 | 0.2748 | 3.1818 | 0.1452 | 0.0111 | 3.5436 | 0.1260 | 2.8715 | 0.6809 | 0.0405 | 0.9675 | 4.0992 | 35.6559 | NaN | 4.2 | NaN | NaN | NaN | NaN | 2.800000e+05 | % |
53 | Gabon | 6.1881 | 0.0109 | 8.1825 | 0.0000 | 9.1158 | 0.0701 | 2.2578 | 9.0341 | 4.3200 | 0.9486 | 0.4751 | 0.5758 | 0.8509 | 0.0139 | 0.0015 | 11.8727 | 0.0212 | 1.2508 | 0.1248 | 0.0051 | 0.4824 | 2.3979 | 41.8004 | 13.4 | 10.5 | 0.513537 | 0.003182 | 0.483953 | 0.026401 | 2.231000e+06 | % |
54 | Gambia | 2.8419 | 0.0114 | 10.1417 | 0.0000 | 21.8908 | 0.2008 | 3.9197 | 0.8742 | 1.1134 | 4.8167 | 0.9824 | 0.0812 | 3.1637 | 0.1281 | 0.0043 | 0.8614 | 0.2719 | 4.1176 | 0.0000 | 0.0897 | 2.2026 | 2.4575 | 39.8291 | 8.7 | 10.2 | 0.175300 | 0.005544 | 0.160778 | 0.008978 | 2.417000e+06 | % |
55 | Georgia | 2.5343 | 0.2356 | 15.5347 | 0.0000 | 15.6253 | 0.5032 | 0.6622 | 3.1735 | 2.6217 | 11.3605 | 0.7882 | 0.1507 | 0.0840 | 0.0025 | 0.0247 | 3.7542 | 0.2397 | 3.3110 | 0.0000 | 0.1631 | 0.6680 | 4.0993 | 34.4636 | 23.3 | 7.9 | 7.042261 | 0.087995 | 6.805249 | 0.149017 | 3.715000e+06 | % |
56 | Germany | 6.7714 | 0.6715 | 20.8485 | 0.0011 | 6.0363 | 0.5947 | 0.6758 | 3.6131 | 4.6524 | 14.1789 | 0.0000 | 0.0747 | 0.1701 | 0.0419 | 0.0429 | 3.5712 | 0.3493 | 2.5070 | 0.0000 | 0.1903 | 0.8104 | 5.0542 | 29.1443 | 25.7 | <2.5 | 2.743101 | 0.073891 | 2.451366 | 0.217844 | 8.330000e+07 | % |
57 | Ghana | 0.9444 | 0.0088 | 2.8956 | 0.0000 | 6.3230 | 0.0705 | 1.4992 | 10.4274 | 0.8069 | 0.4178 | 0.1657 | 0.0917 | 0.7957 | 0.3920 | 0.2380 | 24.6325 | 0.0053 | 0.8128 | 0.2815 | 0.0364 | 0.3655 | 1.6849 | 47.1041 | 9.7 | 5.5 | 0.225424 | 0.001445 | 0.204364 | 0.019615 | 3.107300e+07 | % |
58 | Greece | 2.2879 | 0.2116 | 17.6914 | 0.0005 | 7.2801 | 0.4539 | 1.0260 | 6.3296 | 3.7836 | 12.0221 | 0.0596 | 0.1947 | 0.8112 | 0.2539 | 0.0243 | 3.1307 | 0.2560 | 1.7744 | 0.0000 | 0.6676 | 1.5237 | 7.9134 | 32.3038 | 27.4 | <2.5 | 1.525355 | 0.055617 | 0.876299 | 0.593439 | 1.070000e+07 | % |
59 | Grenada | 3.1315 | 0.1276 | 12.1319 | 0.0019 | 7.6569 | 0.9226 | 2.5802 | 11.0608 | 5.6546 | 2.7183 | 1.2873 | 0.1266 | 1.3768 | 0.6417 | 0.3171 | 2.2222 | 0.1104 | 5.4480 | 0.0000 | 0.0143 | 0.9959 | 3.6085 | 37.8648 | 20.2 | NaN | 0.130973 | 0.000885 | 0.129204 | 0.000885 | 1.130000e+05 | % |
60 | Guatemala | 1.7037 | 0.0957 | 10.3765 | 0.0000 | 15.1579 | 1.4676 | 0.2807 | 6.7124 | 3.9589 | 4.4093 | 0.0348 | 0.1632 | 0.5276 | 1.6504 | 0.0403 | 1.3316 | 0.2872 | 5.3058 | 0.0000 | 0.1980 | 0.8747 | 5.7997 | 39.6240 | 18.8 | 15.2 | 0.901899 | 0.032403 | 0.824294 | 0.045201 | 1.806600e+07 | % |
61 | Guinea | 0.3110 | 0.0213 | 3.8776 | 0.0000 | 17.2911 | 0.1648 | 0.8939 | 7.9395 | 1.1561 | 1.4724 | 0.2312 | 0.1692 | 0.9506 | 0.3925 | 0.0000 | 11.7958 | 0.1196 | 1.3368 | 0.0000 | 0.0009 | 1.3271 | 4.4286 | 46.1202 | 6.6 | 16.5 | 0.116760 | 0.000669 | 0.114013 | 0.002078 | 1.256000e+07 | % |
62 | Guinea-Bissau | 2.4603 | 0.0423 | 4.9295 | 0.0000 | 21.6069 | 0.1038 | 0.1666 | 6.3660 | 2.2155 | 2.1899 | 0.5331 | 0.2114 | 0.3280 | 0.2499 | 0.0013 | 8.1087 | 0.0167 | 0.7893 | 0.0000 | 0.4485 | 1.8016 | 2.3642 | 45.0666 | 8.2 | 28 | 0.143851 | 0.002387 | 0.125947 | 0.015516 | 1.927000e+06 | % |
63 | Guyana | 1.8708 | 0.0206 | 9.1155 | 0.0000 | 9.7847 | 0.1038 | 1.7011 | 5.7954 | 2.5237 | 4.7277 | 0.3516 | 0.0385 | 1.8367 | 0.3907 | 0.1942 | 1.8384 | 0.0742 | 3.2325 | 0.0000 | 0.0435 | 0.2779 | 15.2061 | 40.8722 | 19.2 | 8.1 | 1.008767 | 0.022872 | 0.884625 | 0.101271 | 7.870000e+05 | % |
64 | Haiti | 1.2733 | 0.0402 | 3.5986 | 0.0000 | 13.4196 | 0.0525 | 0.5064 | 12.0278 | 1.9687 | 0.8765 | 0.3309 | 0.1532 | 0.4829 | 2.0067 | 0.0022 | 11.4800 | 0.3801 | 2.0961 | 0.0000 | 0.0000 | 0.8742 | 2.0302 | 46.3997 | 20.5 | 49.3 | 0.103113 | 0.002149 | 0.080295 | 0.020670 | 1.140300e+07 | % |
65 | Honduras | 2.0662 | 0.1378 | 13.6048 | 0.0000 | 14.1699 | 0.4601 | 0.3339 | 6.8464 | 3.5080 | 9.0154 | 0.6923 | 0.1505 | 0.1749 | 1.3962 | 0.0138 | 0.6796 | 0.4686 | 5.9591 | 0.0000 | 0.0276 | 1.2467 | 2.6599 | 36.3883 | 19.4 | 12.9 | 1.560270 | 0.037612 | 0.626369 | 0.896290 | 9.864000e+06 | % |
66 | Hungary | 6.7533 | 1.0595 | 20.0268 | 0.0007 | 7.5908 | 0.8885 | 0.4113 | 3.0852 | 5.2042 | 12.4568 | 0.0039 | 0.0052 | 0.0679 | 0.1906 | 0.1802 | 3.0460 | 0.1031 | 2.5433 | 0.0000 | 0.0183 | 0.7214 | 5.6788 | 29.9644 | 28.6 | <2.5 | 3.840739 | 0.133367 | 2.845797 | 0.861575 | 9.767000e+06 | % |
67 | Iceland | 4.7545 | 0.9461 | 23.9700 | 0.0025 | 4.1196 | 0.5557 | 4.6117 | 4.8405 | 4.6269 | 13.0028 | 1.4022 | 0.2232 | 0.1759 | 0.0376 | 0.0676 | 1.9909 | 0.4626 | 3.9472 | 0.0000 | 0.0752 | 0.4667 | 3.6874 | 26.0331 | 23.1 | <2.5 | 1.636141 | 0.007880 | 1.619293 | 0.008967 | 3.680000e+05 | % |
68 | India | 0.1959 | 0.0028 | 11.3357 | 0.0000 | 17.3821 | 0.3061 | 0.6499 | 5.4333 | 0.3560 | 9.9889 | 0.0000 | 0.0311 | 0.7280 | 1.5709 | 0.3268 | 2.7906 | 0.0753 | 1.7471 | 0.0000 | 0.1526 | 0.7487 | 7.5213 | 38.6568 | 3.8 | 14.5 | 0.773256 | 0.011070 | 0.751561 | 0.010625 | 1.400100e+09 | % |
69 | Indonesia | 0.0794 | 0.0309 | 6.2575 | 0.0009 | 24.3918 | 0.4911 | 3.9386 | 5.5134 | 1.0316 | 0.5943 | 0.0026 | 0.1702 | 2.2113 | 0.0988 | 0.1508 | 4.6343 | 0.0406 | 1.8481 | 0.0000 | 0.0564 | 0.8579 | 3.8558 | 43.7438 | 6.9 | 8.3 | 0.422100 | 0.011553 | 0.345620 | 0.064927 | 2.717390e+08 | % |
70 | Iran (Islamic Republic of) | 0.0007 | 0.5369 | 7.9295 | 0.0020 | 14.0141 | 0.4916 | 0.7813 | 7.9235 | 2.3965 | 3.5808 | 0.0007 | 0.1405 | 0.0540 | 0.4729 | 0.0559 | 3.2877 | 0.1299 | 2.1980 | 0.0000 | 0.6421 | 0.7706 | 12.5207 | 42.0701 | 25.5 | 4.9 | 1.734248 | 0.069414 | 1.482322 | 0.182512 | 8.415000e+07 | % |
71 | Iraq | 0.1915 | 0.0423 | 6.2809 | 0.0000 | 24.0855 | 1.2467 | 0.4450 | 6.4975 | 2.5171 | 1.9902 | 0.3975 | 0.0396 | 0.3037 | 0.4807 | 0.0304 | 1.0842 | 0.1783 | 3.3755 | 0.0000 | 0.1268 | 2.0139 | 4.9563 | 43.7165 | 27.4 | 29 | 1.579398 | 0.033004 | 1.508287 | 0.038107 | 3.972500e+07 | % |
72 | Ireland | 7.5703 | 0.8710 | 18.5712 | 0.0005 | 6.3057 | 0.4653 | 1.1942 | 3.3996 | 4.0102 | 11.9469 | 0.2951 | 0.0831 | 0.1733 | 0.1325 | 0.0362 | 3.5362 | 0.1855 | 4.0147 | 0.0000 | 0.0836 | 0.7497 | 4.9510 | 31.4242 | 26.9 | <2.5 | 4.048531 | 0.073436 | 0.467000 | 3.508095 | 5.003000e+06 | % |
73 | Israel | 1.2876 | 0.1026 | 18.7463 | 0.0017 | 7.6277 | 0.5664 | 1.4696 | 6.3746 | 5.5003 | 10.9066 | 0.2602 | 0.2007 | 0.5233 | 0.3640 | 0.0278 | 1.9975 | 0.2619 | 1.7747 | 0.0000 | 0.2262 | 1.6743 | 8.8586 | 31.2472 | 26.7 | <2.5 | 7.439052 | 0.055024 | 6.609635 | 0.774392 | 9.216000e+06 | % |
74 | Italy | 3.1892 | 0.2834 | 19.0329 | 0.0005 | 8.5417 | 0.6247 | 1.5816 | 6.0207 | 4.2963 | 12.1258 | 0.0403 | 0.1194 | 0.1836 | 0.2781 | 0.0064 | 1.9043 | 0.2946 | 1.7175 | 0.0000 | 0.4230 | 1.4224 | 6.9463 | 30.9671 | 22.9 | <2.5 | 4.353685 | 0.150927 | 3.494529 | 0.708229 | 6.029600e+07 | % |
75 | Jamaica | 2.4636 | 0.2074 | 11.9958 | 0.0074 | 8.5031 | 0.1457 | 1.8692 | 8.0661 | 4.3372 | 5.2170 | 0.6952 | 0.2111 | 0.9990 | 0.2177 | 0.3752 | 4.5837 | 0.1677 | 4.6889 | 0.0000 | 0.0110 | 0.7584 | 6.4772 | 38.0023 | 24.4 | 8 | 0.599537 | 0.012709 | 0.435208 | 0.151620 | 2.809000e+06 | % |
76 | Japan | 4.0440 | 0.0751 | 15.3194 | 0.1088 | 12.1692 | 1.6960 | 3.9283 | 2.8618 | 4.2599 | 5.0630 | 0.2962 | 0.1883 | 0.7737 | 0.1287 | 0.1036 | 2.2072 | 0.3731 | 2.2055 | 0.2280 | 0.0812 | 1.3445 | 7.8669 | 34.6776 | 4.4 | <2.5 | 0.320821 | 0.005059 | 0.284770 | 0.030991 | 1.259670e+08 | % |
77 | Jordan | 0.0846 | 0.1162 | 9.3186 | 0.0000 | 14.1380 | 0.3344 | 0.5985 | 4.6624 | 3.8651 | 4.2637 | 0.3579 | 0.1397 | 0.7280 | 0.6393 | 0.0469 | 2.1431 | 0.3742 | 4.7276 | 0.0000 | 0.1652 | 1.9861 | 10.6308 | 40.6798 | 33.4 | 12.2 | 3.126276 | 0.040912 | 2.991760 | 0.093604 | 1.067900e+07 | % |
78 | Kazakhstan | 2.1919 | 0.3611 | 19.1598 | 0.0000 | 6.5119 | 0.4584 | 0.2393 | 3.2145 | 3.4501 | 14.3591 | 0.2967 | 0.2914 | 0.1154 | 0.0255 | 0.0106 | 5.4755 | 0.1319 | 1.4560 | 0.0000 | 0.0845 | 1.1215 | 10.2055 | 30.8394 | 21.3 | <2.5 | 1.299402 | 0.016651 | 1.137764 | 0.144987 | 1.873200e+07 | % |
79 | Kenya | 1.9664 | 0.1175 | 11.4394 | 0.0000 | 15.1221 | 0.1447 | 0.4329 | 4.6941 | 1.7336 | 8.7987 | 0.0250 | 0.2110 | 0.2686 | 1.7510 | 0.0174 | 7.5828 | 0.2230 | 1.8098 | 0.0000 | 0.0892 | 0.6689 | 4.3450 | 38.5589 | 6.0 | 29.4 | 0.189975 | 0.003318 | 0.157491 | 0.029166 | 5.352800e+07 | % |
80 | Kiribati | 0.2970 | 0.0486 | 8.8958 | 0.0000 | 8.2747 | 0.1640 | 6.1065 | 5.8907 | 2.3856 | 0.1561 | 0.5104 | 0.0350 | 9.9946 | 0.0032 | 0.0064 | 7.1830 | 0.0311 | 4.1373 | 0.0000 | 0.1951 | 0.4419 | 4.1389 | 41.1042 | 45.6 | 2.7 | NaN | NaN | NaN | NaN | 1.250000e+05 | % |
81 | Korea, North | 0.8981 | 0.0010 | 3.3933 | 0.0010 | 17.9378 | 0.4668 | 1.1568 | 6.1383 | 1.3872 | 0.3146 | 0.0690 | 0.0660 | 0.2090 | 1.1000 | 0.0000 | 6.2438 | 0.0142 | 0.3694 | 0.0000 | 0.0426 | 0.7783 | 12.8082 | 46.6046 | 7.1 | 47.8 | NaN | NaN | NaN | NaN | 2.577900e+07 | % |
82 | Korea, South | 4.8669 | 0.2553 | 11.8174 | 1.6794 | 11.7286 | 0.6414 | 3.4396 | 3.6993 | 4.4239 | 1.1394 | 0.0000 | 0.2378 | 0.5632 | 0.0720 | 0.0288 | 0.9799 | 0.0945 | 2.4835 | 0.0006 | 0.1664 | 1.1663 | 12.3349 | 38.1810 | 4.9 | <2.5 | 0.156227 | 0.002841 | 0.136855 | 0.016531 | 5.178100e+07 | % |
83 | Kuwait | 0.0044 | 0.0022 | 10.7213 | 0.0022 | 11.4132 | 1.3306 | 0.8343 | 5.3058 | 4.8770 | 3.4788 | 0.8554 | 0.1969 | 0.2783 | 0.4353 | 0.2020 | 3.2296 | 0.2696 | 2.9163 | 0.0276 | 0.1512 | 1.1976 | 12.9953 | 39.2750 | 37.0 | 2.8 | 3.624728 | 0.020550 | 3.434087 | 0.170092 | 4.691000e+06 | % |
84 | Kyrgyzstan | 0.6313 | 0.1910 | 15.4588 | 0.0000 | 10.1059 | 0.2653 | 0.0700 | 2.2846 | 1.8707 | 12.8008 | 0.2076 | 0.2604 | 0.0098 | 0.3439 | 0.0197 | 5.8068 | 0.0608 | 3.2495 | 0.0000 | 0.1449 | 0.3550 | 11.3219 | 34.5412 | 15.4 | 7.1 | 1.288929 | 0.021580 | 1.236609 | 0.030740 | 6.594000e+06 | % |
85 | Lao People's Democratic Republic | 0.7883 | 0.0979 | 3.6579 | 0.0006 | 16.3943 | 0.1063 | 1.4213 | 8.8158 | 1.7111 | 0.1632 | 0.3404 | 0.1581 | 0.3584 | 0.1485 | 0.1317 | 3.4835 | 0.9869 | 1.1101 | 1.9254 | 0.0028 | 0.2149 | 11.6410 | 46.3416 | 4.5 | 16.5 | 0.000621 | 0.000000 | 0.000566 | 0.000055 | 7.242000e+06 | % |
86 | Latvia | 5.4573 | 1.1805 | 18.8216 | 0.0005 | 6.3952 | 0.6645 | 1.3226 | 2.5738 | 3.6559 | 11.8285 | 0.2596 | 0.1686 | 0.1107 | 0.0032 | 0.0122 | 6.5835 | 0.1963 | 2.6169 | 0.0000 | 0.0793 | 0.6990 | 6.1946 | 31.1757 | 25.7 | <2.5 | 3.749737 | 0.069769 | 3.122976 | 0.556993 | 1.902000e+06 | % |
87 | Lebanon | 0.7164 | 0.0796 | 8.0679 | 0.0000 | 11.8253 | 0.1730 | 0.7091 | 6.9852 | 1.9469 | 5.0748 | 0.0747 | 0.0853 | 0.5052 | 0.5011 | 0.0406 | 3.2676 | 0.3647 | 5.1366 | 0.0000 | 0.5271 | 1.4807 | 10.5128 | 41.9252 | 31.3 | 11 | 4.656938 | 0.052190 | 2.947062 | 1.657685 | 6.825000e+06 | % |
88 | Lesotho | 3.4135 | 0.0233 | 6.0914 | 0.0000 | 23.4645 | 0.1204 | 0.2383 | 1.8065 | 2.5290 | 2.7893 | 0.3898 | 0.3924 | 0.0725 | 1.1603 | 0.1165 | 7.1935 | 0.0363 | 2.2079 | 0.0000 | 0.0052 | 0.6786 | 3.3721 | 43.8988 | 13.5 | 13.1 | 0.437908 | 0.008543 | 0.126331 | 0.303035 | 2.142000e+06 | % |
89 | Liberia | 1.0338 | 0.0264 | 3.7603 | 0.0000 | 16.1465 | 0.1598 | 0.7764 | 5.3606 | 2.4123 | 0.1545 | 0.2997 | 0.2311 | 0.4159 | 0.0977 | 0.0013 | 15.3608 | 0.0132 | 1.1236 | 1.1804 | 0.0779 | 1.9567 | 3.1728 | 46.2383 | 8.6 | 37.2 | 0.038671 | 0.001661 | 0.034994 | 0.002017 | 5.058000e+06 | % |
90 | Lithuania | 5.5419 | 0.5316 | 23.0490 | 0.0009 | 6.4732 | 0.7000 | 1.5431 | 2.4007 | 3.7899 | 16.3529 | 0.0126 | 0.1301 | 0.0867 | 0.4388 | 0.0546 | 2.2766 | 0.2164 | 4.5020 | 0.0000 | 0.0550 | 0.4924 | 4.4045 | 26.9471 | 28.4 | <2.5 | 6.667072 | 0.104760 | 4.939621 | 1.622691 | 2.794000e+06 | % |
91 | Luxembourg | 8.0858 | 0.5443 | 14.6038 | 0.0051 | 5.1366 | 0.7875 | 1.6249 | 4.4841 | 4.0469 | 7.4929 | 0.3877 | 0.1036 | 0.1658 | 0.0399 | 0.0586 | 2.2067 | 1.2823 | 8.1121 | 0.0000 | 0.0308 | 0.5630 | 4.8536 | 35.3838 | 24.2 | <2.5 | 8.150633 | 0.093354 | 7.661551 | 0.395728 | 6.320000e+05 | % |
92 | Madagascar | 0.7972 | 0.0415 | 4.9125 | 0.0024 | 19.9604 | 0.0770 | 0.6267 | 5.0701 | 1.4618 | 2.5031 | 0.0782 | 0.2002 | 0.1848 | 0.3708 | 0.0486 | 14.4675 | 0.2085 | 1.0922 | 0.5852 | 0.0261 | 0.3115 | 1.8871 | 45.0869 | 4.5 | 44.4 | 0.068849 | 0.001015 | 0.065779 | 0.002055 | 2.769100e+07 | % |
93 | Malawi | 1.1827 | 0.0814 | 2.7754 | 0.0000 | 10.6197 | 0.0829 | 0.6970 | 8.4723 | 1.4923 | 0.2524 | 0.0396 | 0.1695 | 0.5436 | 1.1841 | 0.0139 | 20.2901 | 0.0389 | 0.6412 | 0.0000 | 0.0161 | 0.2040 | 3.9786 | 47.2242 | 4.7 | 17.5 | 0.140486 | 0.004375 | 0.059320 | 0.076790 | 1.913000e+07 | % |
94 | Malaysia | 0.8948 | 0.0882 | 12.6354 | 0.0204 | 17.3088 | 1.6596 | 5.3482 | 4.1713 | 4.9092 | 0.5300 | 0.1541 | 0.0789 | 0.5801 | 0.2617 | 0.4502 | 1.6568 | 0.1012 | 3.9030 | 0.0000 | 0.0835 | 1.6336 | 6.1678 | 37.3632 | 15.3 | 2.5 | 0.728230 | 0.002614 | 0.570361 | 0.155255 | 3.278100e+07 | % |
95 | Maldives | 0.6859 | 0.0029 | 14.2704 | 0.0068 | 11.5385 | 1.1422 | 8.7959 | 6.0777 | 2.0051 | 2.3155 | 3.0315 | 0.0019 | 0.2082 | 0.0808 | 0.3434 | 1.6403 | 0.3960 | 2.9790 | 0.1002 | 0.7569 | 0.1819 | 7.7180 | 35.7208 | 7.9 | 10.3 | 3.078743 | 0.009982 | 2.690573 | 0.378189 | 5.410000e+05 | % |
96 | Mali | 2.8904 | 0.0444 | 10.1637 | 0.0000 | 19.8566 | 0.0573 | 0.7543 | 3.8991 | 1.9124 | 7.1206 | 0.1841 | 0.2746 | 0.4910 | 0.7955 | 0.0638 | 2.6772 | 0.0614 | 0.8811 | 0.0000 | 0.2374 | 0.5144 | 7.2943 | 39.8262 | 7.1 | 6.3 | 0.040294 | 0.001669 | 0.029895 | 0.008730 | 2.025100e+07 | % |
97 | Malta | 3.9051 | 0.2062 | 13.6092 | 0.0017 | 7.8996 | 0.6714 | 1.7922 | 4.6310 | 4.6096 | 6.2546 | 0.0315 | 0.0747 | 0.2899 | 0.2197 | 0.0331 | 2.0590 | 0.2101 | 5.2164 | 0.0000 | 0.1236 | 0.4860 | 11.2856 | 36.3899 | 31.0 | <2.5 | 3.558621 | 0.053448 | 3.045211 | 0.459962 | 5.220000e+05 | % |
98 | Mauritania | 0.0055 | 0.1127 | 15.0193 | 0.0000 | 20.4873 | 0.2539 | 1.0025 | 1.2991 | 3.3994 | 9.8250 | 0.7519 | 0.4279 | 0.0799 | 1.0999 | 0.0066 | 1.0168 | 0.3677 | 4.3166 | 0.0000 | 0.0000 | 1.5716 | 3.9784 | 34.9779 | 11.3 | 10.4 | 0.361118 | 0.009140 | 0.343763 | 0.008215 | 4.650000e+06 | % |
99 | Mauritius | 3.0805 | 0.0074 | 9.2700 | 0.0102 | 17.1855 | 0.5910 | 2.1303 | 3.5680 | 4.6992 | 1.7166 | 1.0545 | 0.1173 | 0.4479 | 0.8560 | 0.1847 | 1.8348 | 0.1625 | 3.5680 | 0.0000 | 0.0369 | 2.0490 | 6.7122 | 40.7175 | 11.5 | 6.5 | 0.046166 | 0.000791 | 0.042688 | 0.002688 | 1.265000e+06 | % |
100 | Mexico | 4.4105 | 0.1672 | 15.1527 | 0.0201 | 11.4325 | 1.2967 | 0.9656 | 7.6794 | 4.3561 | 7.9917 | 0.0275 | 0.3552 | 0.1947 | 0.7071 | 0.1121 | 1.1644 | 0.0248 | 3.2266 | 0.0000 | 0.1121 | 0.6856 | 5.0713 | 34.8456 | 28.4 | 3.6 | 1.507199 | 0.129731 | 1.159805 | 0.217663 | 1.277920e+08 | % |
101 | Mongolia | 3.1430 | 0.3846 | 25.8904 | 0.0000 | 10.1415 | 0.3727 | 0.0440 | 1.0413 | 8.0929 | 15.8560 | 0.5962 | 1.1411 | 0.0266 | 0.0366 | 0.0037 | 2.6155 | 0.1401 | 1.4680 | 0.0000 | 0.0137 | 0.5550 | 4.3326 | 24.1046 | 19.6 | 13.4 | 0.060190 | 0.000060 | 0.043112 | 0.017019 | 3.361000e+06 | % |
102 | Montenegro | 2.2188 | 0.2067 | 22.8328 | 0.0014 | 5.0447 | 0.5542 | 0.6472 | 5.7297 | 3.3604 | 17.9487 | 0.8470 | 0.1132 | 0.0865 | 0.2113 | 0.0175 | 1.1955 | 0.2605 | 6.0418 | 0.0000 | 0.0948 | 0.4258 | 5.0001 | 27.1612 | 24.9 | <2.5 | 10.408199 | 0.134405 | 9.039871 | 1.233923 | 6.220000e+05 | % |
103 | Morocco | 0.2870 | 0.1449 | 8.4754 | 0.0000 | 18.7029 | 0.4848 | 1.3901 | 7.2110 | 2.5074 | 3.7540 | 0.0079 | 0.1949 | 0.1892 | 0.3306 | 0.1185 | 3.4356 | 0.2042 | 2.6816 | 0.0000 | 0.2549 | 0.8168 | 7.2860 | 41.5224 | 25.6 | 3.4 | 1.321111 | 0.023312 | 1.262575 | 0.035225 | 3.595200e+07 | % |
104 | Mozambique | 1.2195 | 0.0297 | 4.0111 | 0.0000 | 13.1904 | 0.1932 | 1.1353 | 2.8312 | 0.9302 | 1.6385 | 0.1565 | 0.0852 | 0.1258 | 1.2809 | 0.0040 | 22.2864 | 0.1050 | 1.0649 | 0.0000 | 0.2011 | 0.7509 | 2.7738 | 45.9864 | 6.0 | 27.9 | 0.141539 | 0.001447 | 0.085959 | 0.054133 | 3.116600e+07 | % |
105 | Myanmar | 0.2195 | 0.1751 | 13.5188 | 0.0034 | 16.7608 | 0.4613 | 4.0424 | 4.0287 | 4.9753 | 3.6306 | 0.3391 | 0.2298 | 1.1003 | 1.2806 | 0.2170 | 1.4514 | 0.2298 | 2.8592 | 0.0000 | 0.2913 | 0.6322 | 7.0725 | 36.4807 | 5.7 | 10.6 | NaN | NaN | NaN | NaN | 5.470400e+07 | % |
106 | Namibia | 5.4716 | 0.1134 | 9.6094 | 0.0053 | 9.9189 | 0.1196 | 1.0164 | 3.1266 | 2.6844 | 5.4479 | 0.7228 | 0.2207 | 0.0818 | 0.7298 | 0.1266 | 12.8231 | 0.0888 | 3.9848 | 0.0009 | 0.0114 | 0.9531 | 2.3626 | 40.3800 | 15.0 | 27.3 | 1.371271 | 0.014601 | 1.312830 | 0.043841 | 2.541000e+06 | % |
107 | Nepal | 0.3318 | 0.0312 | 5.4355 | 0.0000 | 18.1511 | 0.1435 | 0.2050 | 4.7443 | 0.9817 | 3.9212 | 0.0594 | 0.1536 | 0.0594 | 0.9107 | 0.4195 | 6.0521 | 0.0319 | 0.5470 | 3.0677 | 0.0978 | 0.8209 | 9.2770 | 44.5576 | 3.8 | 8.7 | 0.906141 | 0.006784 | 0.892826 | 0.006531 | 2.999600e+07 | % |
108 | Netherlands | 4.3903 | 0.3343 | 24.2977 | 0.0111 | 4.9685 | 0.7470 | 1.1517 | 4.9230 | 4.0105 | 18.0051 | 0.0000 | 0.0397 | 0.1111 | 0.0852 | 0.0640 | 4.2639 | 0.2904 | 2.3446 | 0.0000 | 0.1587 | 0.8485 | 3.2587 | 25.6959 | 23.1 | <2.5 | 5.815292 | 0.082830 | 0.076063 | 5.656398 | 1.746700e+07 | % |
109 | New Caledonia | 5.0363 | 0.0821 | 11.7818 | 0.0804 | 8.5840 | 0.7494 | 2.0361 | 5.5855 | 5.8687 | 2.7675 | 3.6589 | 0.1993 | 2.2961 | 0.1275 | 0.0488 | 2.5648 | 0.1745 | 3.1901 | 0.0000 | 0.0376 | 1.3157 | 5.5941 | 38.2208 | NaN | 7.1 | NaN | NaN | NaN | NaN | 2.950000e+05 | % |
110 | New Zealand | 5.2220 | 0.7446 | 17.5777 | 0.0170 | 7.7522 | 0.7067 | 1.6771 | 4.0202 | 6.8421 | 7.4627 | 0.0000 | 0.1275 | 0.3296 | 0.2414 | 0.0495 | 3.3719 | 0.2374 | 3.8188 | 0.0109 | 0.1499 | 0.5364 | 6.6889 | 32.4155 | 32.0 | <2.5 | 0.046521 | 0.000501 | 0.044696 | 0.001323 | 4.987000e+06 | % |
111 | Nicaragua | 1.7194 | 0.0836 | 13.1538 | 0.0030 | 16.8052 | 0.5490 | 0.6557 | 3.8377 | 3.1044 | 8.5527 | 0.6658 | 0.2055 | 0.3354 | 1.3618 | 0.0060 | 1.9118 | 0.0050 | 5.7021 | 0.0000 | 0.0030 | 0.9227 | 3.5808 | 36.8356 | 21.8 | 17 | 0.095497 | 0.002577 | 0.064054 | 0.028866 | 6.596000e+06 | % |
112 | Niger | 0.0558 | 0.1185 | 7.2385 | 0.0000 | 22.2843 | 0.0239 | 0.2022 | 2.5503 | 1.2702 | 5.4224 | 0.0687 | 0.2022 | 1.4804 | 3.4838 | 0.0807 | 1.3489 | 0.0349 | 0.3666 | 0.0000 | 0.0000 | 0.3975 | 10.6117 | 42.7585 | 4.7 | 16.5 | 0.019009 | 0.000682 | 0.016330 | 0.001997 | 2.418900e+07 | % |
113 | Nigeria | 4.0037 | 0.0151 | 1.7391 | 0.0000 | 10.9220 | 0.1976 | 0.7239 | 4.4268 | 0.5675 | 0.1730 | 0.0437 | 0.0627 | 0.4763 | 0.8311 | 0.1715 | 19.5271 | 0.0064 | 0.6501 | 0.0000 | 0.0841 | 0.8573 | 6.2627 | 48.2585 | 7.8 | 13.4 | 0.067547 | 0.000799 | 0.054602 | 0.012146 | 2.061400e+08 | % |
114 | North Macedonia | 1.9045 | 0.3784 | 12.0639 | 0.0000 | 7.3937 | 0.2847 | 0.3507 | 5.0893 | 2.0683 | 8.8045 | 0.2959 | 0.1773 | 0.3253 | 0.2847 | 0.1288 | 3.6779 | 0.2474 | 2.9104 | 0.0000 | 0.1796 | 0.9505 | 14.5512 | 37.9330 | 23.9 | 3.2 | 4.548029 | 0.140192 | 4.025721 | 0.382115 | 2.080000e+06 | % |
115 | Norway | 3.7939 | 0.6119 | 21.1992 | 0.0005 | 5.9777 | 0.6194 | 2.7466 | 4.2801 | 3.6083 | 13.5227 | 3.6634 | 0.0893 | 0.3113 | 0.3204 | 0.0235 | 2.8097 | 0.4819 | 2.2652 | 0.0000 | 0.0990 | 0.8697 | 3.9131 | 28.7933 | 25.0 | <2.5 | 1.200167 | 0.010804 | 0.334101 | 0.855263 | 5.387000e+06 | % |
116 | Oman | 0.2621 | 0.0571 | 13.5101 | 0.0000 | 9.6835 | 0.5741 | 2.0105 | 9.7870 | 3.0531 | 7.6265 | 0.0423 | 0.1888 | 0.1338 | 0.2776 | 0.2297 | 1.6984 | 0.1395 | 2.5903 | 0.0077 | 0.0521 | 0.6995 | 10.8902 | 36.4860 | 22.9 | 6.8 | 2.865288 | 0.032506 | 2.700318 | 0.132463 | 4.713000e+06 | % |
117 | Pakistan | 0.0085 | 0.0969 | 22.2758 | 0.0011 | 14.6224 | 0.3577 | 0.1831 | 2.4099 | 1.7957 | 19.6466 | 0.0117 | 0.1969 | 0.3577 | 0.6993 | 0.1618 | 1.8202 | 0.5258 | 2.6707 | 1.7915 | 0.0852 | 0.3417 | 2.2173 | 27.7226 | 7.8 | 20.3 | 0.250961 | 0.005416 | 0.230941 | 0.014604 | 2.209400e+08 | % |
118 | Panama | 6.6254 | 0.2467 | 12.3346 | 0.0031 | 14.2627 | 0.4604 | 1.0050 | 6.6783 | 4.9800 | 5.3530 | 0.7431 | 0.2873 | 0.4589 | 0.4129 | 0.0153 | 1.3758 | 0.1195 | 4.2277 | 0.0000 | 0.0360 | 0.7645 | 1.9480 | 37.6619 | 22.5 | 10 | 7.622321 | 0.127364 | 6.773850 | 0.721107 | 4.283000e+06 | % |
119 | Paraguay | 3.9095 | 0.2191 | 11.2654 | 0.0000 | 7.5639 | 0.9035 | 0.3119 | 5.4532 | 4.0434 | 5.3208 | 0.1788 | 0.4675 | 0.2745 | 0.6185 | 0.0082 | 12.5302 | 1.0112 | 2.4084 | 0.0000 | 0.0015 | 1.0733 | 3.7113 | 38.7260 | 19.0 | 10.7 | 1.896664 | 0.038691 | 1.562591 | 0.295382 | 7.255000e+06 | % |
120 | Peru | 3.8623 | 0.0316 | 8.6638 | 0.0014 | 11.8140 | 0.6431 | 1.7993 | 8.5783 | 1.7540 | 4.0729 | 0.0719 | 0.3629 | 0.2458 | 0.6367 | 0.0172 | 8.7924 | 0.2501 | 1.7339 | 0.0000 | 0.0230 | 0.5066 | 4.8044 | 41.3344 | 19.1 | 9.7 | 3.573742 | 0.127751 | 3.310514 | 0.135477 | 3.282400e+07 | % |
121 | Philippines | 1.9716 | 0.3074 | 6.7108 | 0.0000 | 20.0498 | 0.3527 | 2.4506 | 8.5466 | 3.2257 | 0.1045 | 0.1925 | 0.2717 | 0.5425 | 0.1106 | 0.0340 | 2.8773 | 0.5399 | 2.3774 | 0.0000 | 0.1838 | 0.4119 | 5.4481 | 43.2905 | 6.0 | 13.3 | 0.488699 | 0.010139 | 0.445757 | 0.032803 | 1.095810e+08 | % |
122 | Poland | 6.8201 | 0.9842 | 16.5590 | 0.0000 | 7.9033 | 0.3702 | 0.5845 | 3.0079 | 4.8500 | 9.7542 | 0.0000 | 0.0170 | 0.0798 | 0.1099 | 0.0202 | 5.5631 | 0.1509 | 2.4775 | 0.0000 | 0.0476 | 0.3959 | 6.8655 | 33.4390 | 25.6 | <2.5 | 4.028175 | 0.101632 | 3.392335 | 0.534208 | 3.836800e+07 | % |
123 | Portugal | 4.7147 | 0.4077 | 18.6614 | 0.0005 | 6.2984 | 0.4053 | 2.7295 | 6.5126 | 4.5168 | 10.3936 | 0.1393 | 0.2079 | 0.0965 | 0.1618 | 0.0173 | 3.1060 | 0.2684 | 1.7316 | 0.0000 | 0.2319 | 0.7246 | 7.3366 | 31.3374 | 23.2 | <2.5 | 7.429605 | 0.136070 | 5.846836 | 1.446699 | 1.025500e+07 | % |
124 | Republic of Moldova | 3.8296 | 0.4339 | 16.5343 | 0.0000 | 11.6462 | 0.6795 | 0.9910 | 3.4256 | 3.2622 | 10.9992 | 0.5083 | 0.1694 | 0.0616 | 0.0642 | 0.0068 | 3.9066 | 0.0830 | 2.6632 | 0.0000 | 0.0180 | 0.8250 | 6.4285 | 33.4640 | 20.1 | NaN | 4.646195 | 0.099859 | 4.333692 | 0.212645 | 3.535000e+06 | % |
125 | Romania | 4.7679 | 0.3474 | 15.9287 | 0.0000 | 8.0412 | 0.6848 | 0.2844 | 4.2115 | 3.0499 | 11.4018 | 0.2567 | 0.1594 | 0.0974 | 0.1045 | 0.1274 | 4.7130 | 0.1398 | 1.4126 | 0.0000 | 0.1093 | 0.7301 | 9.3641 | 34.0679 | 24.5 | <2.5 | 3.863328 | 0.097755 | 3.583358 | 0.182215 | 1.924100e+07 | % |
126 | Russian Federation | 3.7425 | 0.2486 | 16.1525 | 0.0023 | 8.2803 | 0.9029 | 1.1312 | 3.1620 | 4.3180 | 9.3253 | 0.0118 | 0.2249 | 0.1319 | 0.1426 | 0.0118 | 6.3194 | 0.1809 | 4.6144 | 0.0000 | 0.0118 | 0.8663 | 6.3713 | 33.8472 | 25.7 | <2.5 | 2.663104 | 0.051120 | 2.316142 | 0.295842 | 1.467330e+08 | % |
127 | Rwanda | 1.3631 | 0.0186 | 2.6366 | 0.0000 | 3.5380 | 0.0269 | 0.5279 | 15.7285 | 0.6257 | 1.3521 | 0.0283 | 0.0855 | 0.2233 | 2.5036 | 0.0179 | 20.4415 | 0.0110 | 0.5782 | 0.0000 | 0.0000 | 0.2109 | 2.7193 | 47.3634 | 4.8 | 36.8 | 0.126135 | 0.001675 | 0.093013 | 0.031447 | 1.295200e+07 | % |
128 | Saint Kitts and Nevis | 4.0867 | 0.1735 | 14.0252 | 0.0000 | 6.3135 | 0.3868 | 3.4174 | 7.5449 | 7.8207 | 1.8950 | 1.5442 | 0.3318 | 0.9470 | 0.5422 | 0.0901 | 2.7150 | 0.0749 | 6.4623 | 0.0000 | 0.0673 | 1.3850 | 4.2090 | 35.9677 | 23.1 | NaN | 0.074074 | 0.000000 | 0.066667 | 0.007407 | 5.400000e+04 | % |
129 | Saint Lucia | 7.8024 | 0.0252 | 14.8893 | 0.0009 | 7.2091 | 0.3326 | 3.0652 | 5.9453 | 8.1700 | 2.8881 | 1.6054 | 0.4063 | 0.6274 | 0.5663 | 0.1780 | 2.6427 | 0.0602 | 3.7043 | 0.0000 | 0.0575 | 0.6103 | 4.1169 | 35.0964 | 19.8 | NaN | 0.996154 | 0.009890 | 0.480769 | 0.505495 | 1.820000e+05 | % |
130 | Saint Vincent and the Grenadines | 2.5260 | 0.0220 | 11.0865 | 0.0000 | 9.0142 | 0.3412 | 1.3785 | 10.4710 | 6.9184 | 2.2593 | 1.9325 | 0.1672 | 0.1049 | 0.6452 | 0.2113 | 4.3734 | 0.2933 | 3.4592 | 0.0000 | 0.0357 | 0.7227 | 5.1371 | 38.9005 | 23.8 | 5.7 | 1.082883 | 0.002703 | 0.361261 | 0.718919 | 1.110000e+05 | % |
131 | Samoa | 1.4236 | 0.2262 | 11.1630 | 0.1236 | 3.6768 | 0.1314 | 2.7788 | 10.7845 | 5.7993 | 1.9647 | 0.7751 | 0.1398 | 10.5187 | 0.0000 | 0.0582 | 7.6944 | 0.1344 | 2.0811 | 0.0036 | 0.0108 | 0.5117 | 1.1656 | 38.8349 | 45.5 | 2.7 | 0.001000 | 0.000000 | 0.001000 | 0.000000 | 2.000000e+05 | % |
132 | Sao Tome and Principe | 1.5187 | 0.0220 | 4.1199 | 0.0000 | 7.3796 | 0.0562 | 2.3033 | 18.2736 | 1.2054 | 0.5152 | 0.4240 | 0.0187 | 9.9865 | 0.3109 | 0.0293 | 3.7154 | 0.0073 | 2.5939 | 0.0000 | 0.0024 | 0.7805 | 0.8570 | 45.8801 | 10.6 | 7 | 0.643333 | 0.008571 | 0.504762 | 0.130000 | 2.100000e+05 | % |
133 | Saudi Arabia | 0.0000 | 0.3917 | 12.9962 | 0.0000 | 16.3284 | 0.6003 | 1.0369 | 7.0413 | 4.9529 | 5.8598 | 0.6690 | 0.1547 | 0.1492 | 0.4768 | 0.2434 | 1.4542 | 0.2050 | 2.8571 | 0.0009 | 0.1135 | 1.7626 | 5.7024 | 37.0038 | 35.0 | 7.1 | 1.055795 | 0.018256 | 1.030898 | 0.006641 | 3.504100e+07 | % |
134 | Senegal | 0.3209 | 0.0353 | 5.3434 | 0.0000 | 25.9204 | 0.1878 | 2.0588 | 2.3456 | 1.6081 | 1.2496 | 0.0148 | 0.2060 | 0.7637 | 0.4712 | 0.0717 | 2.6177 | 0.1161 | 2.0941 | 0.0000 | 0.1047 | 1.9325 | 7.8951 | 44.6423 | 7.4 | 11.3 | 0.170145 | 0.004031 | 0.139107 | 0.027007 | 1.674400e+07 | % |
135 | Serbia | 4.3920 | 0.2524 | 16.7466 | 0.0000 | 9.7485 | 0.6322 | 0.4148 | 5.9753 | 3.5893 | 11.6190 | 0.0067 | 0.2389 | 0.1322 | 0.1805 | 0.0242 | 2.5450 | 0.2430 | 2.0255 | 0.0007 | 0.1268 | 0.4644 | 7.3941 | 33.2476 | 23.5 | 5.7 | 5.840908 | 0.059106 | 0.000000 | 5.781803 | 6.957000e+06 | % |
136 | Sierra Leone | 0.3009 | 0.0067 | 5.6877 | 0.0000 | 19.9349 | 0.1343 | 2.5044 | 3.2119 | 0.7837 | 2.1711 | 0.2504 | 0.0857 | 0.5999 | 0.8913 | 0.0638 | 12.4228 | 0.0762 | 0.6323 | 0.0000 | 0.1000 | 1.2760 | 4.5526 | 44.3138 | 7.5 | 25.6 | 0.047286 | 0.000990 | 0.030738 | 0.015557 | 7.977000e+06 | % |
137 | Slovakia | 6.1266 | 1.3559 | 18.9841 | 0.0000 | 5.4026 | 0.9390 | 0.7045 | 3.5463 | 4.3096 | 11.4696 | 0.0290 | 0.2055 | 0.2055 | 0.0973 | 0.0421 | 3.6814 | 0.2513 | 5.5166 | 0.0000 | 0.1118 | 1.4380 | 4.5601 | 31.0231 | 22.4 | 3.4 | 4.792640 | 0.094013 | 4.361424 | 0.337202 | 5.462000e+06 | % |
138 | Slovenia | 4.9933 | 1.1248 | 18.9196 | 0.0005 | 7.6345 | 0.5376 | 0.6515 | 6.4367 | 4.1610 | 12.2569 | 0.6133 | 0.1879 | 0.1285 | 0.1106 | 0.0561 | 2.6837 | 0.2615 | 2.4915 | 0.0000 | 0.1972 | 0.4739 | 5.0020 | 31.0774 | 22.5 | <2.5 | 8.235901 | 0.171755 | 7.312934 | 0.751213 | 2.103000e+06 | % |
139 | Solomon Islands | 0.8298 | 0.1038 | 3.8504 | 0.0121 | 9.0233 | 0.0826 | 2.2840 | 3.2798 | 0.8897 | 0.4380 | 0.5585 | 0.0394 | 5.0334 | 0.7366 | 0.0364 | 24.2500 | 0.0856 | 0.8268 | 0.0000 | 0.0356 | 0.3327 | 1.1223 | 46.1492 | 20.5 | 8.9 | 0.002378 | 0.000000 | 0.001399 | 0.000979 | 7.150000e+05 | % |
140 | South Africa | 6.2658 | 0.0593 | 11.8433 | 0.0009 | 17.1035 | 0.5940 | 0.5365 | 1.9355 | 5.3933 | 4.8155 | 0.0009 | 0.4448 | 0.2462 | 0.1546 | 0.0539 | 2.8503 | 0.1321 | 4.4677 | 0.0000 | 0.0108 | 1.1726 | 3.7632 | 38.1554 | 27.0 | 6.2 | 2.471490 | 0.077447 | 2.248100 | 0.145943 | 5.962800e+07 | % |
141 | Spain | 5.3152 | 0.2357 | 18.3382 | 0.0011 | 6.0548 | 0.7321 | 2.2646 | 4.8332 | 5.3456 | 9.5991 | 0.0000 | 0.1605 | 0.2650 | 0.2666 | 0.0069 | 3.0975 | 0.2229 | 1.8482 | 0.0000 | 0.4287 | 1.5122 | 7.8139 | 31.6581 | 27.1 | <2.5 | 6.176110 | 0.128867 | 0.315684 | 5.731559 | 4.763500e+07 | % |
142 | Sri Lanka | 0.6810 | 0.0147 | 5.5328 | 0.0039 | 20.7839 | 0.4178 | 3.0173 | 4.1171 | 0.8845 | 1.0948 | 0.0303 | 0.0998 | 7.1364 | 0.9608 | 0.5244 | 1.9793 | 0.2818 | 2.7209 | 0.0000 | 0.1350 | 0.2466 | 4.8753 | 44.4618 | 5.4 | 9 | 0.312604 | 0.001600 | 0.285335 | 0.025669 | 2.193700e+07 | % |
143 | Sudan | 0.0000 | 0.0958 | 13.1178 | 0.0000 | 12.9192 | 0.1176 | 0.1018 | 7.0919 | 2.1133 | 10.4116 | 0.0741 | 0.2796 | 0.4920 | 1.0631 | 0.0405 | 1.9167 | 0.1502 | 3.1231 | 0.7262 | 0.0000 | 0.9366 | 8.3477 | 36.8813 | 7.4 | 20.1 | 0.067582 | 0.004176 | 0.049702 | 0.013704 | 4.384900e+07 | % |
144 | Suriname | 4.1704 | 0.0438 | 6.7984 | 0.0000 | 13.9476 | 0.5407 | 1.4348 | 8.6872 | 3.6451 | 1.0789 | 1.2414 | 0.0576 | 0.6757 | 0.1719 | 0.0224 | 2.4553 | 0.0903 | 4.7051 | 0.3207 | 0.0155 | 1.3351 | 5.3705 | 43.1917 | 26.5 | 8.5 | 1.429752 | 0.026446 | 1.318017 | 0.085289 | 6.050000e+05 | % |
145 | Sweden | 4.4232 | 1.0442 | 24.0627 | 0.0000 | 6.1923 | 0.7266 | 1.7659 | 3.5405 | 4.1476 | 16.3687 | 0.4623 | 0.0086 | 0.1712 | 0.0937 | 0.0484 | 2.8343 | 0.5533 | 2.5211 | 0.0000 | 0.0996 | 0.3967 | 4.6110 | 25.9282 | 22.1 | <2.5 | 5.666975 | 0.116749 | 0.000000 | 5.550226 | 1.037700e+07 | % |
146 | Switzerland | 4.9978 | 0.4802 | 22.4227 | 0.0022 | 5.9818 | 0.5377 | 0.9109 | 4.6041 | 3.6314 | 16.7060 | 0.0000 | 0.1549 | 0.1124 | 0.0995 | 0.0382 | 2.1542 | 0.3727 | 2.9737 | 0.0000 | 0.2377 | 1.0637 | 4.9478 | 27.5705 | 21.2 | <2.5 | 6.160215 | 0.111258 | 3.678480 | 2.370477 | 8.634000e+06 | % |
147 | Taiwan* | 2.7663 | 0.1577 | 12.1312 | 0.0281 | 10.0808 | 1.0900 | 2.3182 | 8.3904 | 6.0558 | 2.3299 | 0.1874 | 0.1507 | 1.0736 | 0.2077 | 0.1023 | 0.8565 | 0.1374 | 2.3455 | 0.2826 | 0.4185 | 1.8271 | 9.1938 | 37.8684 | NaN | 3.5 | 0.003914 | 0.000038 | 0.003571 | 0.000305 | 2.361000e+07 | % |
148 | Tajikistan | 0.1423 | 0.0018 | 7.2363 | 0.0000 | 13.3691 | 0.2255 | 0.0342 | 3.7863 | 1.5221 | 5.2373 | 0.2089 | 0.2144 | 0.1349 | 0.2486 | 0.0305 | 2.9278 | 0.0555 | 1.6607 | 0.0000 | 0.0582 | 0.8419 | 19.2995 | 42.7642 | 12.6 | NaN | 0.141139 | 0.000955 | 0.140185 | 0.000000 | 9.429000e+06 | % |
149 | Thailand | 3.6223 | 0.0902 | 7.7828 | 0.0325 | 17.5571 | 1.1143 | 2.6297 | 8.3291 | 2.4675 | 1.3279 | 0.0090 | 0.1199 | 1.2775 | 0.2344 | 0.6626 | 1.8887 | 0.1262 | 4.0424 | 0.0000 | 0.0938 | 0.7816 | 3.5962 | 42.2145 | 10.8 | 7.8 | 0.035126 | 0.000119 | 0.025464 | 0.009544 | 6.653400e+07 | % |
150 | Timor-Leste | 0.4459 | 0.0897 | 5.4983 | 0.0000 | 26.3320 | 0.1025 | 1.0225 | 2.1027 | 4.0376 | 0.1307 | 0.8905 | 0.1153 | 0.5612 | 0.9098 | 0.0500 | 5.5022 | 1.0136 | 2.8203 | 0.0000 | 0.0013 | 0.6842 | 3.1867 | 44.5030 | 2.9 | 24.9 | 0.006070 | 0.000000 | 0.004628 | 0.001442 | 1.318000e+06 | % |
151 | Togo | 1.0144 | 0.0292 | 3.6702 | 0.0000 | 15.8144 | 0.1067 | 1.3178 | 0.9100 | 1.4133 | 0.7246 | 0.7448 | 0.0775 | 0.4718 | 1.7626 | 0.0595 | 20.0654 | 0.0843 | 1.8312 | 0.0000 | 0.0000 | 1.4099 | 2.1637 | 46.3287 | 7.1 | 16.1 | 0.065660 | 0.000954 | 0.054777 | 0.009929 | 8.279000e+06 | % |
152 | Trinidad and Tobago | 2.4881 | 0.2804 | 12.7835 | 0.0000 | 13.0903 | 0.4044 | 2.3299 | 4.9733 | 6.7063 | 2.8789 | 0.2413 | 0.1837 | 1.2016 | 0.8939 | 0.2305 | 3.5148 | 0.0899 | 5.6200 | 0.0000 | 0.0928 | 1.2563 | 3.5256 | 37.2145 | 19.7 | 5.5 | 0.556026 | 0.009861 | 0.529949 | 0.016216 | 1.369000e+06 | % |
153 | Tunisia | 0.7037 | 0.2083 | 9.6312 | 0.0000 | 12.0523 | 0.4508 | 0.7615 | 5.4307 | 1.6411 | 6.4775 | 0.0116 | 0.0926 | 0.2031 | 0.4311 | 0.1065 | 1.7724 | 0.1979 | 2.0832 | 0.0000 | 0.3489 | 1.2551 | 15.7731 | 40.3673 | 27.3 | 4.3 | 1.817216 | 0.060205 | 1.453304 | 0.303707 | 1.189600e+07 | % |
154 | Turkey | 0.6474 | 0.1459 | 12.3156 | 0.0000 | 9.7080 | 0.3956 | 0.2582 | 6.8321 | 2.0694 | 9.3619 | 0.0101 | 0.0857 | 0.2720 | 0.6820 | 0.1251 | 2.4947 | 0.2002 | 1.7004 | 0.0000 | 0.4664 | 1.0174 | 13.5284 | 37.6836 | 32.2 | <2.5 | 3.015138 | 0.031868 | 2.881050 | 0.102220 | 8.373700e+07 | % |
155 | Turkmenistan | 0.5038 | 0.3373 | 16.0611 | 0.0000 | 14.8029 | 0.5139 | 0.2137 | 4.1441 | 4.3767 | 10.5606 | 0.2530 | 0.0589 | 0.0661 | 0.1032 | 0.0015 | 2.3000 | 0.0945 | 0.6746 | 0.0000 | 0.0283 | 0.5655 | 10.4014 | 33.9389 | 17.5 | 5.4 | NaN | NaN | NaN | NaN | 6.031000e+06 | % |
156 | Uganda | 6.1671 | 0.0352 | 5.6473 | 0.0000 | 6.7480 | 0.0815 | 1.0442 | 11.3112 | 0.8978 | 3.4755 | 0.0371 | 0.1130 | 0.6338 | 2.3942 | 0.0120 | 12.3610 | 0.0130 | 1.2601 | 0.0000 | 0.0000 | 0.7440 | 2.6703 | 44.3536 | 4.1 | 41 | 0.087058 | 0.000715 | 0.031370 | 0.054973 | 4.574100e+07 | % |
157 | Ukraine | 2.6250 | 0.1753 | 13.1214 | 0.0006 | 9.3613 | 0.8434 | 0.6821 | 2.9418 | 2.7425 | 8.5442 | 0.0070 | 0.1339 | 0.0175 | 0.1099 | 0.0111 | 7.6721 | 0.0883 | 3.8811 | 0.0000 | 0.0807 | 0.6470 | 9.4361 | 36.8777 | 26.1 | 3.5 | 3.075923 | 0.059206 | 2.653382 | 0.363335 | 4.177800e+07 | % |
158 | United Arab Emirates | 0.0000 | 0.1896 | 10.5491 | 0.0000 | 12.9060 | 0.5958 | 1.9682 | 8.1938 | 4.9400 | 2.6468 | 0.9471 | 0.2095 | 0.6133 | 2.1108 | 0.3194 | 0.8937 | 0.1649 | 3.6576 | 0.0000 | 0.5838 | 0.7949 | 8.2695 | 39.4461 | 29.9 | 2.6 | 3.307445 | 0.009348 | 3.079168 | 0.218930 | 9.778000e+06 | % |
159 | United Kingdom | 5.2632 | 0.2754 | 18.8798 | 0.0006 | 6.5412 | 0.6210 | 1.0911 | 4.9551 | 4.4181 | 12.3684 | 0.6658 | 0.1056 | 0.2240 | 0.2035 | 0.0653 | 5.1133 | 0.2461 | 2.4383 | 0.0000 | 0.0901 | 0.7372 | 4.5851 | 31.1116 | 29.5 | <2.5 | 5.868483 | 0.167220 | 0.015161 | 5.686102 | 6.716000e+07 | % |
160 | United Republic of Tanzania | 4.5185 | 0.0403 | 4.8022 | 0.0000 | 10.4453 | 0.0300 | 0.5828 | 6.8147 | 0.7902 | 3.3606 | 0.0214 | 0.0000 | 1.2839 | 2.1761 | 0.0274 | 13.9370 | 0.0300 | 1.0345 | 0.0000 | 0.0420 | 0.9136 | 3.9520 | 45.1973 | 7.1 | 30.7 | 0.000852 | 0.000035 | 0.000306 | 0.000511 | 5.973400e+07 | % |
161 | United States of America | 4.8647 | 0.1681 | 21.2352 | 0.0020 | 5.5048 | 0.7860 | 1.1287 | 4.5432 | 6.2645 | 12.8657 | 0.0000 | 0.0197 | 0.3246 | 0.1893 | 0.0490 | 2.8390 | 0.2458 | 3.3200 | 0.0000 | 0.1772 | 0.9889 | 5.7249 | 28.7587 | 37.3 | <2.5 | 8.159922 | 0.140103 | 0.000000 | 8.019819 | 3.298780e+08 | % |
162 | Uruguay | 3.5664 | 0.2100 | 17.8865 | 0.0000 | 10.2510 | 0.7764 | 0.6058 | 5.3746 | 3.7863 | 12.3906 | 0.3918 | 0.1168 | 0.2770 | 0.1936 | 0.0144 | 3.0440 | 0.6169 | 3.4102 | 0.0000 | 0.0131 | 1.0337 | 3.9333 | 32.1076 | 28.9 | <2.5 | 1.269102 | 0.013622 | 1.089465 | 0.166015 | 3.531000e+06 | % |
163 | Uzbekistan | 0.6835 | 0.1353 | 14.4463 | 0.0000 | 10.5365 | 0.3566 | 0.1218 | 5.2150 | 1.8621 | 11.7952 | 0.0400 | 0.1748 | 0.0287 | 0.0022 | 0.0038 | 2.8891 | 0.0644 | 0.5796 | 0.0000 | 0.0649 | 0.6109 | 14.8354 | 35.5540 | 15.3 | 6.3 | 0.231302 | 0.001817 | 0.226751 | 0.002733 | 3.417400e+07 | % |
164 | Vanuatu | 0.2424 | 0.0793 | 6.6244 | 0.0000 | 6.4102 | 0.1875 | 2.1649 | 5.8103 | 2.7466 | 1.2692 | 0.2882 | 0.1776 | 12.1763 | 0.0008 | 0.0374 | 12.7275 | 0.0305 | 1.3645 | 0.0000 | 0.0038 | 0.3674 | 3.9175 | 43.3737 | 23.5 | 7.2 | 0.000312 | 0.000000 | 0.000312 | 0.000000 | 3.210000e+05 | % |
165 | Venezuela (Bolivarian Republic of) | 2.5952 | 0.0403 | 14.7565 | 0.0000 | 12.9253 | 0.3389 | 0.9456 | 7.6460 | 3.8328 | 9.3920 | 0.0702 | 0.2078 | 0.0281 | 0.3342 | 0.0009 | 2.5643 | 0.1479 | 3.4106 | 0.0000 | 0.0009 | 1.3734 | 4.1474 | 35.2416 | 25.2 | 21.2 | 0.452585 | 0.004287 | 0.424399 | 0.023899 | 2.864500e+07 | % |
166 | Vietnam | 1.4591 | 0.1640 | 8.5765 | 0.0042 | 16.8740 | 0.3077 | 2.6392 | 5.9029 | 4.4382 | 0.6069 | 0.0126 | 0.4149 | 0.8410 | 0.2032 | 0.2074 | 1.0596 | 0.2880 | 1.2846 | 0.8150 | 0.3070 | 0.2201 | 11.9508 | 41.4232 | 2.1 | 9.3 | 0.002063 | 0.000036 | 0.001526 | 0.000501 | 9.620900e+07 | % |
167 | Yemen | 0.0364 | 0.0446 | 5.7874 | 0.0000 | 27.2077 | 0.2579 | 0.5240 | 5.1344 | 2.7871 | 1.8911 | 0.2033 | 0.2827 | 0.0893 | 0.8645 | 0.0347 | 1.0794 | 0.2199 | 5.0468 | 0.0000 | 0.0017 | 1.0811 | 3.2135 | 44.2126 | 14.1 | 38.9 | 0.007131 | 0.002062 | 0.004788 | 0.000282 | 2.982600e+07 | % |
168 | Zambia | 5.7360 | 0.0829 | 6.0197 | 0.0000 | 21.1938 | 0.3399 | 1.6924 | 1.0183 | 1.8427 | 1.7570 | 0.2149 | 0.3048 | 1.8736 | 0.1756 | 0.0478 | 7.9649 | 0.0618 | 1.5632 | 0.0000 | 0.0014 | 0.6657 | 3.4649 | 43.9789 | 6.5 | 46.7 | 0.334133 | 0.004564 | 0.290524 | 0.039045 | 1.838400e+07 | % |
169 | Zimbabwe | 4.0552 | 0.0755 | 8.1489 | 0.0000 | 22.6240 | 0.2678 | 0.5518 | 2.2000 | 2.6142 | 4.4310 | 0.2012 | 0.2086 | 0.4498 | 0.4261 | 0.0252 | 2.9870 | 0.1494 | 4.6485 | 0.0000 | 0.0518 | 1.7103 | 2.3213 | 41.8526 | 12.3 | 51.3 | 0.232033 | 0.008854 | 0.190964 | 0.032214 | 1.486300e+07 | % |
Analyzing the Data
Evaluation #1: Does Obesity Lead To An Increased Chance Of Death From COVID-19?
Obesity continues to be one of the leading causes of death in the United States and worldwide. In most circumstances, people may become obese due to a poor nutritional diet. "Obesity has reached epidemic proportions globally, with at least 2.9 million people dying each year as a result of being overweight or obese" [3]. As previously mentioned, COVID-19 is a infectious respiratory disease. It is probable to expect that individuals with poor nutritional diets, possibly consisting of individuals who suffer from obesity or in the overweight category would be at greater risk of infection and death. To test whether there is a correlation between obesity and COVID-19 deaths, we took the obesity rates of various countries and compared them to the number of COVID-19 deaths of each country, performing a linear regression on the plot. The reason behind using a linear regression is because if there is a correlation, a linear relation is clearly illustrated. Below are the results of our calculations regarding the linear relationship between Obesity and COVID-19 deaths.
Null Hypothesis: Obesity rates have no correlation between obesity and COVID-19 deaths globally for each country in the dataset.
Alternate Hypothesis: Obesity rates have a strong correlation between obesity and COVID-19 deaths globally for each country in the dataset.
# Reset all rows of dataframe so all the rows are not displayed in the table below
pd.reset_option('all')
# Ignore all warnings that occur after output
warnings.filterwarnings('ignore')
# Drop all necessary columns except the ones that have a direct relation to COVID-19 tests, deaths, and various age groups
covid_obesity_df = covid_df.drop(['Alcoholic Beverages', 'Animal Products', 'Animal fats', 'Aquatic Products, Other',
'Cereals - Excluding Beer', 'Eggs', 'Fish, Seafood', 'Fruits - Excluding Wine', 'Meat',
'Miscellaneous', 'Milk - Excluding Butter', 'Offals', 'Oilcrops', 'Pulses', 'Spices',
'Starchy Roots', 'Stimulants', 'Sugar Crops', 'Sugar & Sweeteners', 'Treenuts',
'Vegetal Products', 'Vegetable Oils', 'Vegetables', 'Undernourished', 'Population',
'Unit (all except Population)'], axis = 1)
# Drop any rows of data that contain missing values or 'NaN' values
covid_obesity_df = covid_obesity_df.dropna(how = 'any', thresh = None, subset = ['Obesity', 'Deaths'], inplace = False)
# Print new table
covid_obesity_df
: boolean use_inf_as_null had been deprecated and will be removed in a future version. Use `use_inf_as_na` instead.
/opt/conda/lib/python3.8/site-packages/pandas/_config/config.py:622: FutureWarning: : boolean use_inf_as_null had been deprecated and will be removed in a future version. Use `use_inf_as_na` instead. warnings.warn(d.msg, FutureWarning)
Country | Obesity | Confirmed | Deaths | Recovered | Active | |
---|---|---|---|---|---|---|
0 | Afghanistan | 4.5 | 0.142134 | 0.006186 | 0.123374 | 0.012574 |
1 | Albania | 22.3 | 2.967301 | 0.050951 | 1.792636 | 1.123714 |
2 | Algeria | 26.6 | 0.244897 | 0.006558 | 0.167572 | 0.070767 |
3 | Angola | 6.8 | 0.061687 | 0.001461 | 0.056808 | 0.003419 |
4 | Antigua and Barbuda | 19.1 | 0.293878 | 0.007143 | 0.190816 | 0.095918 |
... | ... | ... | ... | ... | ... | ... |
165 | Venezuela (Bolivarian Republic of) | 25.2 | 0.452585 | 0.004287 | 0.424399 | 0.023899 |
166 | Vietnam | 2.1 | 0.002063 | 0.000036 | 0.001526 | 0.000501 |
167 | Yemen | 14.1 | 0.007131 | 0.002062 | 0.004788 | 0.000282 |
168 | Zambia | 6.5 | 0.334133 | 0.004564 | 0.290524 | 0.039045 |
169 | Zimbabwe | 12.3 | 0.232033 | 0.008854 | 0.190964 | 0.032214 |
163 rows × 6 columns
plt.figure(figsize = (12, 8))
x = np.array(covid_obesity_df['Obesity'])
y = np.array(covid_obesity_df['Deaths'])
plt.plot(x, y, 'o', color = 'red')
# Linear Regression using Polyfit
m, b = np.polyfit(x, y, 1)
plt.plot(x, (m * x) + b, color = 'black')
plt.grid()
plt.title("Obesity vs. COVID-19 Deaths", fontsize = 20)
plt.ylabel("Death Rates", fontsize = 18)
plt.xlabel("Obesity Rates", fontsize = 18)
Text(0.5, 0, 'Obesity Rates')
# Print Regression Results for Obesity
regression_results = sm.ols(formula = 'Deaths ~ Obesity', data = covid_obesity_df).fit()
# Create first parameter for linear regression model
first_param = [[x] for x in covid_obesity_df['Obesity']]
# Create second parameter for linear regression model
second_param = [[y] for y in covid_obesity_df['Deaths']]
# Create a variable to call the linearRegression import above
lin_regression = linear_model.LinearRegression()
# Create variable to store linear regression model data
lin_reg_model = lin_regression.fit(first_param, second_param)
# Create coefficient for the above variable
format_one = lin_reg_model.coef_[0]
#Obtain y-intercept of above variable
format_two = lin_reg_model.intercept_
# Print the data for the fitted model
print (regression_results.summary())
# Print new line for spacing purposes
print ()
# prints the output in slope intercept form
print ("Linear Regression Model (Slope Intercept Form): Y = {0}x + {1}".format(format_one, format_two))
# Print new line for spacing purposes
print ()
# Find the p-value
slope, intercept, r_value, p_value, stderr = stats.linregress(covid_obesity_df['Obesity'], covid_obesity_df['Deaths'])
# Print the p-value
print ("The p-Value is: ", p_value, ", which is = 0.00000000006530504174828157")
OLS Regression Results ============================================================================== Dep. Variable: Deaths R-squared: 0.233 Model: OLS Adj. R-squared: 0.229 Method: Least Squares F-statistic: 49.01 Date: Mon, 20 Dec 2021 Prob (F-statistic): 6.53e-11 Time: 16:39:06 Log-Likelihood: 283.24 No. Observations: 163 AIC: -562.5 Df Residuals: 161 BIC: -556.3 Df Model: 1 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ Intercept -0.0072 0.007 -0.958 0.340 -0.022 0.008 Obesity 0.0025 0.000 7.001 0.000 0.002 0.003 ============================================================================== Omnibus: 16.002 Durbin-Watson: 2.047 Prob(Omnibus): 0.000 Jarque-Bera (JB): 17.638 Skew: 0.776 Prob(JB): 0.000148 Kurtosis: 3.436 Cond. No. 46.7 ============================================================================== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. Linear Regression Model (Slope Intercept Form): Y = [0.00250087]x + [-0.00715848] The p-Value is: 6.530504174828157e-11 , which is = 0.00000000006530504174828157
Observations After Evaluation #1
We have provided a table illustrating the data on obesity rates and COVID-19 deaths in various different countries around the world. Additionally, we have provided a scatter plot which illustrates the relation between obesity rates and COVID-19 deaths. Lastly, we have provided OLS regression results that stem from data from the table we created above. As you can see, we determined the p-value from the results of our calculations. The p-value for a statistical model is the probability that when the null hypothesis is true, the statistical summary is equal to or greater than the actual observed results. In this case, the p-value we calculated is 0.00000000006530504174828157 . Subsequently, this value is less than 0.05 , which infers that it is statistically significant. It indicates strong evidence against the null hypothesis, as there is less than a 5% probability that the null hypothesis is correct. Therefore, we REJECT the null hypothesis and ACCEPT the alternative hypothesis , which concludes that there is a significant correlation between obesity rates and COVID-19 deaths in each country globally from our dataset.
Evaluation #2: Does Undernourishment Lead To An Increased Chance Of Death From COVID-19?
Undernourishment continues to be one of the leading causes of death worldwide. "Poor nutrition and hunger is responsible for the death of 3.1 million children a year. That's nearly half of all deaths in children under the age of 5. Globally, 822 million people suffer from undernourishment" (The World Counts). As previously mentioned above, COVID-19 is a infectious respiratory disease, so one would expect that people with poor nutritional diets who result in undernourishment would be at greater risk of infection and death. To test whether there is or is not a correlation between undernourishment and COVID-19 deaths, we took the undernourished rates of various countries and compared them to the number of COVID-19 deaths of each country and performed a linear regression on the plot. We used a linear regression because if there was a correlation, it would intuitively be a linear relation. As shown below, these are the result of our calculations regarding undernourishment and COVID-19 deaths.
Null Hypothesis: Undernourishment rates have no correlation between undernourishment and COVID-19 deaths around the world for each country in the dataset.
Alternate Hypothesis: Undernourishment rates have a strong significant correlation between undernourishment and COVID-19 deaths around the world for each country.
# Drop all necessary columns except the ones that have a direct relation to COVID-19 tests, deaths, and undernourishment
covid_undernourished_df = covid_df.drop(['Alcoholic Beverages', 'Animal Products', 'Animal fats', 'Aquatic Products, Other',
'Cereals - Excluding Beer', 'Eggs', 'Fish, Seafood', 'Fruits - Excluding Wine', 'Meat',
'Miscellaneous', 'Milk - Excluding Butter', 'Offals', 'Oilcrops', 'Pulses', 'Spices',
'Starchy Roots', 'Stimulants', 'Sugar Crops', 'Sugar & Sweeteners', 'Treenuts',
'Vegetal Products', 'Vegetable Oils', 'Vegetables', 'Obesity', 'Population',
'Unit (all except Population)'], axis = 1)
# Drop any rows of data that contain missing values or 'NaN' values
covid_undernourished_df = covid_undernourished_df.dropna(how = 'any', thresh = None, subset = ['Undernourished', 'Deaths'],
inplace = False)
# Delete all occurences of '<' so data will only be represented with whole numbers (not str characters)
covid_undernourished_df['Undernourished'] = covid_undernourished_df['Undernourished'].str.replace('<', '')
# Convert all data in the 'Undernourished' into float representation
covid_undernourished_df['Undernourished'] = pd.to_numeric(covid_undernourished_df['Undernourished'], downcast = 'float')
# Print new table
covid_undernourished_df
Country | Undernourished | Confirmed | Deaths | Recovered | Active | |
---|---|---|---|---|---|---|
0 | Afghanistan | 29.799999 | 0.142134 | 0.006186 | 0.123374 | 0.012574 |
1 | Albania | 6.200000 | 2.967301 | 0.050951 | 1.792636 | 1.123714 |
2 | Algeria | 3.900000 | 0.244897 | 0.006558 | 0.167572 | 0.070767 |
3 | Angola | 25.000000 | 0.061687 | 0.001461 | 0.056808 | 0.003419 |
5 | Argentina | 4.600000 | 4.356147 | 0.108227 | 3.905192 | 0.342729 |
... | ... | ... | ... | ... | ... | ... |
165 | Venezuela (Bolivarian Republic of) | 21.200001 | 0.452585 | 0.004287 | 0.424399 | 0.023899 |
166 | Vietnam | 9.300000 | 0.002063 | 0.000036 | 0.001526 | 0.000501 |
167 | Yemen | 38.900002 | 0.007131 | 0.002062 | 0.004788 | 0.000282 |
168 | Zambia | 46.700001 | 0.334133 | 0.004564 | 0.290524 | 0.039045 |
169 | Zimbabwe | 51.299999 | 0.232033 | 0.008854 | 0.190964 | 0.032214 |
157 rows × 6 columns
plt.figure(figsize = (12, 8))
x = np.array(covid_undernourished_df['Undernourished'])
y = np.array(covid_undernourished_df['Deaths'])
plt.plot(x, y, 'o', color = 'red')
m, b = np.polyfit(x, y, 1)
plt.plot(x, (m * x) + b, color = 'black')
plt.grid()
plt.title("Undernourishment vs. COVID-19 Deaths", fontsize = 20)
plt.ylabel("Death Rates", fontsize = 18)
plt.xlabel("Undernourised Rates", fontsize = 18)
Text(0.5, 0, 'Undernourised Rates')
# Print Regression Results for Undernourished
regression_results = sm.ols(formula = 'Deaths ~ Undernourished', data = covid_undernourished_df).fit()
# Create first parameter for linear regression model
first_param = [[x] for x in covid_undernourished_df['Undernourished']]
# Create second parameter for linear regression model
second_param = [[y] for y in covid_undernourished_df['Deaths']]
# Create a variable to call the linearRegression import above
lin_regression = linear_model.LinearRegression()
# Create variable to store linear regression model data
lin_reg_model = lin_regression.fit(first_param, second_param)
# Create coefficient for the above variable
format_one = lin_reg_model.coef_[0]
#Obtain y-intercept of above variable
format_two = lin_reg_model.intercept_
# Print the data for the fitted model
print (regression_results.summary())
# Print new line for spacing purposes
print ()
# prints the output in slope intercept form
print ("Linear Regression Model (Slopt Intercept Form): Y = {0}x + {1}".format(format_one, format_two))
# Print new line for spacing purposes
print ()
# Find the p-value
slope, intercept, r_value, p_value, stderr = stats.linregress(covid_undernourished_df['Undernourished'],
covid_undernourished_df['Deaths'])
# Print the p-value
print ("The p-Value is: ", p_value, ", which is = 0.00000002243538027485908")
OLS Regression Results ============================================================================== Dep. Variable: Deaths R-squared: 0.183 Model: OLS Adj. R-squared: 0.178 Method: Least Squares F-statistic: 34.77 Date: Mon, 20 Dec 2021 Prob (F-statistic): 2.24e-08 Time: 16:39:06 Log-Likelihood: 266.67 No. Observations: 157 AIC: -529.3 Df Residuals: 155 BIC: -523.2 Df Model: 1 Covariance Type: nonrobust ================================================================================== coef std err t P>|t| [0.025 0.975] ---------------------------------------------------------------------------------- Intercept 0.0601 0.005 12.223 0.000 0.050 0.070 Undernourished -0.0018 0.000 -5.897 0.000 -0.002 -0.001 ============================================================================== Omnibus: 16.312 Durbin-Watson: 2.068 Prob(Omnibus): 0.000 Jarque-Bera (JB): 19.242 Skew: 0.852 Prob(JB): 6.63e-05 Kurtosis: 2.805 Cond. No. 22.4 ============================================================================== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. Linear Regression Model (Slopt Intercept Form): Y = [-0.00179543]x + [0.06012591] The p-Value is: 2.243538027485908e-08 , which is = 0.00000002243538027485908
Observations After Evaluation #2
We have provided a table illustrating the data on undernourishment rates and COVID-19 deaths in various different countries around the world. Additionally, we have provided a scatter plot which illustrates the relation between undernourishment rates and COVID-19 deaths. Lastly, we have provided OLS regression results that stem from data from the table we created above. As you can see, we determined the p-value from the results of our calculations. The p-value for a statistical model is the probability that when the null hypothesis is true, the statistical summary is equal to or greater than the actual observed results. In this case, the p-value we calculated is 0.00000002243538027485908 . Subsequently, this value is less than 0.05 , which infers that it is statistically significant. It indicates strong evidence against the null hypothesis, as there is less than a 5% probability that the null hypothesis is correct. Therefore, we REJECT the null hypothesis and ACCEPT the alternative hypothesis , which concludes that there is a significant correlation between undernourishment rates and COVID-19 deaths in each country around the world from our dataset.
Evaluation #3: Does Eating Vegetables Lead To An Increased Chance Of Death From COVID-19?
Consuming nutritious meals is one meaningful way to elevate one's immune system. Vegetables are high in vitamins, minerals, fiber, and antioxidants. Additionally, they provide nutrients such as beta-carotene, vitamin C, and vitamin E, which can boost immune function. As previously mentioned above, COVID-19 is a infectious respiratory disease, so one would expect that people with great nutritional diets who result in vast vegetable consumption would be at lesser risk of infection and death. Is this true or does the COVID-19 virus make no difference on the type of diet someone is on? To test whether there is or is not a correlation between vegetable consumption and COVID-19 deaths, we took the vegetable consumption rates of various countries and compared them to the number of COVID-19 deaths of each country and performed a linear regression on the plot. We used a linear regression because if there was a correlation, it would intuitively be a linear relation. As shown below, these are the result of our calculations regarding vegetable consumption and COVID-19 deaths.
Null Hypothesis: Vegetable consumption rates have no correlation between vegetable consumption and COVID-19 deaths around the world for each country in the dataset.
Alternate Hypothesis: Vegetable consumption rates have a strong significant correlation between vegetable consumption and COVID-19 deaths around the world for each country.
# Drop all necessary columns except the ones that have a direct relation to COVID-19 tests, deaths, and vegetables
covid_vegetables_df = covid_df.drop(['Alcoholic Beverages', 'Animal fats', 'Animal Products', 'Aquatic Products, Other',
'Cereals - Excluding Beer', 'Eggs', 'Fish, Seafood', 'Fruits - Excluding Wine', 'Meat',
'Miscellaneous', 'Milk - Excluding Butter', 'Offals', 'Oilcrops', 'Pulses', 'Spices',
'Starchy Roots', 'Stimulants', 'Sugar Crops', 'Sugar & Sweeteners', 'Treenuts',
'Vegetal Products', 'Vegetable Oils', 'Obesity', 'Undernourished',
'Population',
'Unit (all except Population)'], axis = 1)
# Drop any rows of data that contain missing values or 'NaN' values
covid_vegetables_df = covid_vegetables_df.dropna(how = 'any', thresh = None,
subset = ['Vegetables', 'Deaths'], inplace = False)
# Print new table
covid_vegetables_df
Country | Vegetables | Confirmed | Deaths | Recovered | Active | |
---|---|---|---|---|---|---|
0 | Afghanistan | 0.3593 | 0.142134 | 0.006186 | 0.123374 | 0.012574 |
1 | Albania | 0.6503 | 2.967301 | 0.050951 | 1.792636 | 1.123714 |
2 | Algeria | 0.5145 | 0.244897 | 0.006558 | 0.167572 | 0.070767 |
3 | Angola | 0.1231 | 0.061687 | 0.001461 | 0.056808 | 0.003419 |
4 | Antigua and Barbuda | 0.2469 | 0.293878 | 0.007143 | 0.190816 | 0.095918 |
... | ... | ... | ... | ... | ... | ... |
165 | Venezuela (Bolivarian Republic of) | 0.1851 | 0.452585 | 0.004287 | 0.424399 | 0.023899 |
166 | Vietnam | 0.6373 | 0.002063 | 0.000036 | 0.001526 | 0.000501 |
167 | Yemen | 0.1667 | 0.007131 | 0.002062 | 0.004788 | 0.000282 |
168 | Zambia | 0.1567 | 0.334133 | 0.004564 | 0.290524 | 0.039045 |
169 | Zimbabwe | 0.0789 | 0.232033 | 0.008854 | 0.190964 | 0.032214 |
164 rows × 6 columns
plt.figure(figsize = (12, 8))
x = np.array(covid_vegetables_df['Vegetables'])
y = np.array(covid_vegetables_df['Deaths'])
plt.plot(x, y, 'o', color = 'red')
m, b = np.polyfit(x, y, 1)
plt.plot(x, (m * x) + b, color = 'black')
plt.grid()
plt.title("Vegetable Consumption vs. COVID-19 Deaths", fontsize = 20)
plt.ylabel("Death Rates", fontsize = 18)
plt.xlabel("Vegetables Consumption Rates", fontsize = 18)
Text(0.5, 0, 'Vegetables Consumption Rates')
# Print Regression Results for Vegetable Consumption
regression_results = sm.ols(formula = 'Deaths ~ Vegetables', data = covid_vegetables_df).fit()
# Create first parameter for linear regression model
first_param = [[x] for x in covid_vegetables_df['Vegetables']]
# Create second parameter for linear regression model
second_param = [[y] for y in covid_vegetables_df['Deaths']]
# Create a variable to call the linearRegression import above
lin_regression = linear_model.LinearRegression()
# Create variable to store linear regression model data
lin_reg_model = lin_regression.fit(first_param, second_param)
# Create coefficient for the above variable
format_one = lin_reg_model.coef_[0]
#Obtain y-intercept of above variable
format_two = lin_reg_model.intercept_
# Print the data for the fitted model
print (regression_results.summary())
# Print new line for spacing purposes
print ()
# prints the output in slope intercept form
print ("Linear Regression Model (Slopt Intercept Form): Y = {0}x + {1}".format(format_one, format_two))
# Print new line for spacing purposes
print ()
# Find the p-value
slope, intercept, r_value, p_value, stderr = stats.linregress(covid_vegetables_df['Vegetables'],
covid_vegetables_df['Deaths'])
# Print the p-value
print ("The P-Value is: ", p_value)
OLS Regression Results ============================================================================== Dep. Variable: Deaths R-squared: 0.000 Model: OLS Adj. R-squared: -0.006 Method: Least Squares F-statistic: 0.004717 Date: Mon, 20 Dec 2021 Prob (F-statistic): 0.945 Time: 16:39:07 Log-Likelihood: 263.36 No. Observations: 164 AIC: -522.7 Df Residuals: 162 BIC: -516.5 Df Model: 1 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ Intercept 0.0398 0.007 5.804 0.000 0.026 0.053 Vegetables -0.0013 0.019 -0.069 0.945 -0.038 0.035 ============================================================================== Omnibus: 27.504 Durbin-Watson: 2.041 Prob(Omnibus): 0.000 Jarque-Bera (JB): 37.012 Skew: 1.162 Prob(JB): 9.18e-09 Kurtosis: 3.114 Cond. No. 5.33 ============================================================================== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. Linear Regression Model (Slopt Intercept Form): Y = [-0.00127219]x + [0.03976037] The P-Value is: 0.9453309860444901
Observations After Evaluation #3
We have provided a table illustrating the data between vegetable consumption rates and COVID-19 deaths in various different countries around the world. Additionally, we have provided a scatter plot which illustrates the relation between vegetable consumption rates and COVID-19 deaths. Lastly, we have provided OLS regression results that stem from data from the table we created above. As you can see, we determined the p-value from the results of our calculations. The p-value for a statistical model is the probability that when the null hypothesis is true, the statistical summary is equal to or greater than the actual observed results. In this case, the p-value we calculated above is 0.9453309860444901. Subsequently, this value is greater than 0.05 , which infers that it is statistically NOT significant. It indicates no strong evidence against the null hypothesis, as there is greater than a 5% probability that the null hypothesis is correct. Therefore, we FAILED to reject the null hypothesis and ACCEPT the null hypothesis, which concludes that there is NOT a significant correlation between vegetable consumption rates and COVID-19 deaths in each country around the world from our dataset. Therefore since we fail to reject the null hypothesis stated above. Eating vegetables does indeed help support our immune system which will help us fight against the COVID-19 virus.
Evaluation #4: Does Treenut Consumption Lead To An Increased Chance Of Death From COVID-19?
Treenuts are widely eaten as a snack food or used in cooking. They are a great source of nutrients, loaded with antioxidants that may aid weight loss, may lower cholestrol and triglycerides, may reduce inflammation, high in beneficial fiber, and improve heart health and immune functions. As previously mentioned above, COVID-19 is a infectious respiratory disease, so one would expect that people with great nutritional diets who result in vast treenut consumption would be at lesser risk of infection and death. Would consuming treenuts for a healthier diet help fight against the COVID-19 virus? To test whether there is or is not a correlation between treenut consumption and COVID-19 deaths, we took the treenut consumption rates of various countries and compared them to the number of COVID-19 deaths of each country and performed a linear regression on the plot. We used a linear regression because if there was a correlation, it would intuitively be a linear relation. As shown below, these are the result of our calculations regarding treenut consumption and COVID-19 deaths.
Null Hypothesis: Treenut consumption rates have no correlation between treenut consumption and COVID-19 deaths around the world for each country in the dataset.
Alternate Hypothesis: Treenut consumption rates have a strong significant correlation between treenut consumption and COVID-19 deaths around the world for each country.
# Drop all necessary columns except the ones that have a direct relation to COVID-19 tests, deaths, and treenuts
covid_treenuts_df = covid_df.drop(['Alcoholic Beverages', 'Animal fats', 'Animal Products', 'Aquatic Products, Other',
'Cereals - Excluding Beer', 'Eggs', 'Fish, Seafood', 'Fruits - Excluding Wine', 'Meat',
'Miscellaneous', 'Milk - Excluding Butter', 'Offals', 'Oilcrops', 'Pulses', 'Spices',
'Starchy Roots', 'Stimulants', 'Sugar Crops', 'Sugar & Sweeteners',
'Vegetal Products', 'Vegetable Oils', 'Vegetables', 'Obesity', 'Undernourished',
'Population',
'Unit (all except Population)'], axis = 1)
# Drop any rows of data that contain missing values or 'NaN' values
covid_treenuts_df = covid_treenuts_df.dropna(how = 'any', thresh = None,
subset = ['Treenuts', 'Deaths'], inplace = False)
# Print new table
covid_treenuts_df
Country | Treenuts | Confirmed | Deaths | Recovered | Active | |
---|---|---|---|---|---|---|
0 | Afghanistan | 0.7513 | 0.142134 | 0.006186 | 0.123374 | 0.012574 |
1 | Albania | 0.9181 | 2.967301 | 0.050951 | 1.792636 | 1.123714 |
2 | Algeria | 0.8595 | 0.244897 | 0.006558 | 0.167572 | 0.070767 |
3 | Angola | 0.0308 | 0.061687 | 0.001461 | 0.056808 | 0.003419 |
4 | Antigua and Barbuda | 0.2020 | 0.293878 | 0.007143 | 0.190816 | 0.095918 |
... | ... | ... | ... | ... | ... | ... |
165 | Venezuela (Bolivarian Republic of) | 0.0154 | 0.452585 | 0.004287 | 0.424399 | 0.023899 |
166 | Vietnam | 1.1726 | 0.002063 | 0.000036 | 0.001526 | 0.000501 |
167 | Yemen | 0.0769 | 0.007131 | 0.002062 | 0.004788 | 0.000282 |
168 | Zambia | 0.0112 | 0.334133 | 0.004564 | 0.290524 | 0.039045 |
169 | Zimbabwe | 0.4296 | 0.232033 | 0.008854 | 0.190964 | 0.032214 |
164 rows × 6 columns
plt.figure(figsize = (12, 8))
x = np.array(covid_treenuts_df['Treenuts'])
y = np.array(covid_treenuts_df['Deaths'])
plt.plot(x, y, 'o', color = 'red')
m, b = np.polyfit(x, y, 1)
plt.plot(x, (m * x) + b, color = 'black')
plt.grid()
plt.title("Treenut Consumption vs. COVID-19 Deaths", fontsize = 20)
plt.ylabel("Death Rates", fontsize = 18)
plt.xlabel("Treenut Consumption Rates", fontsize = 18)
Text(0.5, 0, 'Treenut Consumption Rates')
# Print Regression Results for Treenut Consumption
regression_results = sm.ols(formula = 'Deaths ~ Treenuts', data = covid_treenuts_df).fit()
# Create first parameter for linear regression model
first_param = [[x] for x in covid_treenuts_df['Treenuts']]
# Create second parameter for linear regression model
second_param = [[y] for y in covid_treenuts_df['Deaths']]
# Create a variable to call the linearRegression import above
lin_regression = linear_model.LinearRegression()
# Create variable to store linear regression model data
lin_reg_model = lin_regression.fit(first_param, second_param)
# Create coefficient for the above variable
format_one = lin_reg_model.coef_[0]
#Obtain y-intercept of above variable
format_two = lin_reg_model.intercept_
# Print the data for the fitted model
print (regression_results.summary())
# Print new line for spacing purposes
print ()
# prints the output in slope intercept form
print ("Linear Regression Model (Slopt Intercept Form): Y = {0}x + {1}".format(format_one, format_two))
# Print new line for spacing purposes
print ()
# Find the p-value
slope, intercept, r_value, p_value, stderr = stats.linregress(covid_treenuts_df['Treenuts'],
covid_treenuts_df['Deaths'])
# Print the p-value
print ("The P-Value is: ", p_value)
OLS Regression Results ============================================================================== Dep. Variable: Deaths R-squared: 0.024 Model: OLS Adj. R-squared: 0.018 Method: Least Squares F-statistic: 3.970 Date: Mon, 20 Dec 2021 Prob (F-statistic): 0.0480 Time: 16:39:07 Log-Likelihood: 265.34 No. Observations: 164 AIC: -526.7 Df Residuals: 162 BIC: -520.5 Df Model: 1 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ Intercept 0.0329 0.005 6.585 0.000 0.023 0.043 Treenuts 0.0091 0.005 1.993 0.048 8.18e-05 0.018 ============================================================================== Omnibus: 27.561 Durbin-Watson: 2.041 Prob(Omnibus): 0.000 Jarque-Bera (JB): 37.011 Skew: 1.161 Prob(JB): 9.19e-09 Kurtosis: 3.143 Cond. No. 2.20 ============================================================================== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. Linear Regression Model (Slopt Intercept Form): Y = [0.00913388]x + [0.03285637] The P-Value is: 0.04798943887205049
Observations After Evaluation #4
We have provided a table illustrating the data between treenut consumption rates and COVID-19 deaths in various different countries around the world. Additionally, we have provided a scatter plot which illustrates the relation between treenut consumption rates and COVID-19 deaths. Lastly, we have provided OLS regression results that stem from data from the table we created above. As you can see, we determined the p-value from the results of our calculations. The p-value for a statistical model is the probability that when the null hypothesis is true, the statistical summary is equal to or greater than the actual observed results. In this case, the p-value we calculated above is 0.04798943887205049. Subsequently, this value is less than 0.05, which infers that it is statistically significant. It indicates strong evidence against the null hypothesis, as there is less than a 5% probability that the null hypothesis is correct. Therefore, we REJECT the null hypothesis and ACCEPT the alternate hypothesis, which concludes that there is a correlation between treenut consumption rates and COVID-19 deaths in each country around the world from our dataset. Therefore since we reject the null hypothesis stated above; eating treenuts does indeed help support our immune system, cholesterol levels, and improve heart health but it is not an efficient food group to eat in order to fight against the COVID-19 virus. Additionally, when observing the p-value, it is very close to 0.05, which illustrates that it is still a great food source to help fight against COVID-19, it is just not as effective as consuming vegetables which is shown during evaluation #3.
Evaluation #5: Does Eating Fruits - Excluding Wine Lead To An Increased Chance Of Death From COVID-19?
Fruits are an excellent source of essential vitamins and minerals, and they are high in fiber. Additionally, fruits provide a wide range of health-boosting antixidants, including flavonoids. Consuming a diet high in fruits can reduce our risk of developing heart disease, cancer, inflammation, and diabetes to help support a healthy immune system. As previously mentioned above, COVID-19 is a infectious respiratory disease, so one would expect that people with great nutritional diets who result in vast fruit consumption would be at lesser risk of infection and death. Would consuming fruits for a healthier diet help fight against the COVID-19 virus? To test whether there is or is not a correlation between fruit consumption and COVID-19 deaths, we took the fruit consumption rates of various countries and compared them to the number of COVID-19 deaths of each country and performed a linear regression on the plot. We used a linear regression because if there was a correlation, it would intuitively be a linear relation. As shown below, these are the result of our calculations between fruit consumption and COVID-19 deaths.
Null Hypothesis: Fruit consumption rates have no correlation between fruit consumption and COVID-19 deaths around the world for each country in the dataset.
Alternate Hypothesis: Fruit consumption rates have a strong significant correlation between fruit consumption and COVID-19 deaths around the world for each country. </font>
# Drop all necessary columns except the ones that have a direct relation to COVID-19 tests, deaths, and fruits
covid_fruits_df = covid_df.drop(['Alcoholic Beverages', 'Animal fats', 'Animal Products', 'Aquatic Products, Other',
'Cereals - Excluding Beer', 'Eggs', 'Fish, Seafood', 'Meat', 'Miscellaneous',
'Milk - Excluding Butter', 'Offals', 'Oilcrops', 'Pulses', 'Spices', 'Starchy Roots',
'Stimulants', 'Sugar Crops', 'Sugar & Sweeteners', 'Treenuts', 'Vegetal Products',
'Vegetable Oils', 'Vegetables', 'Obesity', 'Undernourished', 'Population',
'Unit (all except Population)'], axis = 1)
# Drop any rows of data that contain missing values or 'NaN' values
covid_fruits_df = covid_fruits_df.dropna(how = 'any', thresh = None,
subset = ['Fruits - Excluding Wine', 'Deaths'], inplace = False)
# Print new table
covid_fruits_df
Country | Fruits - Excluding Wine | Confirmed | Deaths | Recovered | Active | |
---|---|---|---|---|---|---|
0 | Afghanistan | 0.4246 | 0.142134 | 0.006186 | 0.123374 | 0.012574 |
1 | Albania | 0.6418 | 2.967301 | 0.050951 | 1.792636 | 1.123714 |
2 | Algeria | 0.5772 | 0.244897 | 0.006558 | 0.167572 | 0.070767 |
3 | Angola | 0.3488 | 0.061687 | 0.001461 | 0.056808 | 0.003419 |
4 | Antigua and Barbuda | 1.2177 | 0.293878 | 0.007143 | 0.190816 | 0.095918 |
... | ... | ... | ... | ... | ... | ... |
165 | Venezuela (Bolivarian Republic of) | 0.9640 | 0.452585 | 0.004287 | 0.424399 | 0.023899 |
166 | Vietnam | 0.4079 | 0.002063 | 0.000036 | 0.001526 | 0.000501 |
167 | Yemen | 0.2564 | 0.007131 | 0.002062 | 0.004788 | 0.000282 |
168 | Zambia | 0.1343 | 0.334133 | 0.004564 | 0.290524 | 0.039045 |
169 | Zimbabwe | 0.0614 | 0.232033 | 0.008854 | 0.190964 | 0.032214 |
164 rows × 6 columns
plt.figure(figsize = (12, 8))
x = np.array(covid_fruits_df['Fruits - Excluding Wine'])
y = np.array(covid_fruits_df['Deaths'])
plt.plot(x, y, 'o', color = 'red')
m, b = np.polyfit(x, y, 1)
plt.plot(x, (m * x) + b, color = 'black')
plt.grid()
plt.title("Fruits-Excluding Wine Consumption vs. COVID-19 Deaths", fontsize = 20)
plt.ylabel("Death Rates", fontsize = 18)
plt.xlabel("Fruit Consumption Rates", fontsize = 18)
Text(0.5, 0, 'Fruit Consumption Rates')
# Recreating 'Fruit - Excluding Wine' column to encompass OLS Regression Results
covid_fruits_df['temp_fruits_excluding_wine'] = covid_fruits_df['Fruits - Excluding Wine']
# Print Regression Results for Fruit Consumption
regression_results = sm.ols(formula = 'Deaths ~ temp_fruits_excluding_wine', data = covid_fruits_df).fit()
# Create first parameter for linear regression model
first_param = [[x] for x in covid_fruits_df['Fruits - Excluding Wine']]
# Create second parameter for linear regression model
second_param = [[y] for y in covid_fruits_df['Deaths']]
# Create a variable to call the linearRegression import above
lin_regression = linear_model.LinearRegression()
# Create variable to store linear regression model data
lin_reg_model = lin_regression.fit(first_param, second_param)
# Create coefficient for the above variable
format_one = lin_reg_model.coef_[0]
#Obtain y-intercept of above variable
format_two = lin_reg_model.intercept_
# Print the data for the fitted model
print (regression_results.summary())
# Print new line for spacing purposes
print ()
# prints the output in slope intercept form
print ("Linear Regression Model (Slopt Intercept Form): Y = {0}x + {1}".format(format_one, format_two))
# Print new line for spacing purposes
print ()
# Find the p-value
slope, intercept, r_value, p_value, stderr = stats.linregress(covid_fruits_df['Fruits - Excluding Wine'],
covid_fruits_df['Deaths'])
# Print the p-value
print ("The P-Value is: ", p_value)
OLS Regression Results ============================================================================== Dep. Variable: Deaths R-squared: 0.010 Model: OLS Adj. R-squared: 0.004 Method: Least Squares F-statistic: 1.667 Date: Mon, 20 Dec 2021 Prob (F-statistic): 0.198 Time: 16:39:07 Log-Likelihood: 264.19 No. Observations: 164 AIC: -524.4 Df Residuals: 162 BIC: -518.2 Df Model: 1 Covariance Type: nonrobust ============================================================================================== coef std err t P>|t| [0.025 0.975] ---------------------------------------------------------------------------------------------- Intercept 0.0425 0.005 9.407 0.000 0.034 0.051 temp_fruits_excluding_wine -0.0058 0.004 -1.291 0.198 -0.015 0.003 ============================================================================== Omnibus: 26.668 Durbin-Watson: 2.057 Prob(Omnibus): 0.000 Jarque-Bera (JB): 35.553 Skew: 1.140 Prob(JB): 1.90e-08 Kurtosis: 3.090 Cond. No. 1.84 ============================================================================== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. Linear Regression Model (Slopt Intercept Form): Y = [-0.00577016]x + [0.04254187] The P-Value is: 0.19848679481002798
Observations After Evaluation #5
We have provided a table illustrating the data between Fruit consumption rates (excluding wine) and COVID-19 deaths in various different countries around the world. Additionally, we have provided a scatter plot which illustrates the relation between fruit consumption rates and COVID-19 deaths. Lastly, we have provided OLS regression results that stem from data from the table we created above. As you can see, we determined the p-value from the results of our calculations. The p-value for a statistical model is the probability that when the null hypothesis is true, the statistical summary is equal to or greater than the actual observed results. In this case, the p-value we calculated above is 0.19848679481002798. Subsequently, this value is greater than 0.05, which infers that it is statistically NOT significant. It indicates no strong evidence against the null hypothesis, as there is greater than a 5% probability that the null hypothesis is correct. Therefore, we FAILED to reject the null hypothesis and instead ACCEPT the null hypothesis, which concludes that there is NOT a significant correlation between fruit consumption rates and COVID-19 deaths in each country around the world from our dataset. Therefore since we fail to reject the null hypothesis stated above; eating fruits does indeed help support our immune system which will help us fight against the COVID-19 virus.
Covid Deaths Visually Displayed
To visually display the data, we want to explore the violin plot for Covid-19 Deaths and a Cloropleth map displaying the death rate of each country in our dataset. This initial representation of the data will allow us to gain some initial assumptions about where the most Covid-Deaths ocurred, and where they are locationally to exhibit where these countries are in terms of regions and continents. This will help us later as we analyze region and continent data.
Violin Plot of Overall Covid-19 Death Rate
countries_list = covid_df['Country'].unique()
country_arr = []
for c in countries_list:
country = covid_df[covid_df.Country == c].Deaths
# Extracted value from the filtered dataframe for the deaths percentage of Coronavirus for each country
val = country.values[0]
country_arr.append(val)
# Make a dataframe with these two columns to plot on Violin plot
covid_data = {'Country': countries_list, 'Death_Rate': country_arr}
cut_df = pd.DataFrame(covid_data)
#ax = sns.violinplot(x= cut_df['Death_Rate'])
fig = px.violin(cut_df, y='Death_Rate', box = True, points = 'all')
fig.show()
Observing the violin plot above, we can see that while most of the Covid-19 Death Rate fell around the median value of 0.012 deaths overall. This is where the violin plot is the widest, since it contains the most values. Further up the violin plot, we can observe that there were quite a bit of countries which had death rate above the median, the highest death rate percentage reaching to 0.185.
Cloropleth Map of Covid Death Rate by Country
# This has the codes for the countries so that we can make a map which plots the different traits from our main dataset
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2014_world_gdp_with_codes.csv')
country_codes = []
# This loop will allow us to now get the correct countries for the map
for i in df['COUNTRY']:
# This will figure out if the country exists in our dataset (Some of the countries in the above dataset aren't in our data)
if i == "Bahamas, The":
country_codes.append("NaN")
if i == "Gambia, The":
country_codes.append("NaN")
if i == "Czech Republic":
country_codes.append("NaN")
if i == "Congo, Democratic Republic of the" or i == "Congo, Republic of the":
country_codes.append("NaN")
# We don't want anymore NaN's since there's technically only one Congo in our actual dataset
if i == "Congo, Democratic Republic of the":
country_codes.pop()
elif cut_df['Country'].str.contains(i).any():
# This will get the proper code for the country
c = df.loc[df.COUNTRY == i, 'CODE']
#Extracts the code
country_codes.append(c.values[0])
# This will make changes to the list in the current iteration so we can have the proper countries with their codes
if i == "Estonia":
country_codes.append("NaN")
if i == "Kyrgyzstan":
country_codes.append("LAO")
if i == "Nigeria":
country_codes.append("NaN")
if i == "Macedonia":
country_codes.pop()
country_codes.append("MDG")
cut_df['Country_Code'] = country_codes
# Need to specifically change some country codes
cut_df.loc[cut_df.Country == 'Bahamas', 'Country_Code'] = 'BHM'
cut_df.loc[cut_df.Country == 'Congo', 'Country_Code'] = 'COD'
cut_df.loc[cut_df.Country == 'Czechia', 'Country_Code'] = 'CZE'
cut_df.loc[cut_df.Country == 'Eswatini', 'Country_Code'] = 'NaN'
cut_df.loc[cut_df.Country == 'Gambia', 'Country_Code'] = 'GMB'
cut_df.loc[cut_df.Country == 'Guinea-Bissau', 'Country_Code'] = 'GNB'
cut_df.loc[cut_df.Country == 'Guinea', 'Country_Code'] = 'GIN'
cut_df.loc[cut_df.Country == 'Myanmar', 'Country_Code'] = 'NaN'
cut_df.loc[cut_df.Country == 'Nigeria', 'Country_Code'] = 'NGA'
cut_df.loc[cut_df.Country == 'Niger', 'Country_Code'] = 'NER'
cut_df.loc[cut_df.Country == 'North Macedonia', 'Country_Code'] = 'NaN'
cut_df.loc[cut_df.Country == 'Republic of Moldova', 'Country_Code'] = 'MDA'
cut_df.loc[cut_df.Country == 'Malawi', 'Country_Code'] = 'MWI'
cut_df.loc[cut_df.Country == 'Malaysia', 'Country_Code'] = 'MYS'
cut_df.loc[cut_df.Country == 'Maldives', 'Country_Code'] = 'MDV'
cut_df.loc[cut_df.Country == 'Mali', 'Country_Code'] = 'MLI'
cut_df.loc[cut_df.Country == 'Malta', 'Country_Code'] = 'MLT'
cut_df.loc[cut_df.Country == 'Mauritania', 'Country_Code'] = 'MRT'
cut_df.loc[cut_df.Country == 'Mauritius', 'Country_Code'] = 'MUS'
cut_df.loc[cut_df.Country == 'Mexico', 'Country_Code'] = 'MEX'
cut_df.loc[cut_df.Country == 'Mongolia', 'Country_Code'] = 'MNG'
cut_df.loc[cut_df.Country == 'Montenegro', 'Country_Code'] = 'MNE'
cut_df.loc[cut_df.Country == 'Morocco', 'Country_Code'] = 'MAR'
cut_df.loc[cut_df.Country == 'Mozambique', 'Country_Code'] = 'MOZ'
cut_df.loc[cut_df.Country == 'Namibia', 'Country_Code'] = 'NAM'
cut_df.loc[cut_df.Country == 'Nepal', 'Country_Code'] = 'NPL'
cut_df.loc[cut_df.Country == 'Netherlands', 'Country_Code'] = 'NLD'
cut_df.loc[cut_df.Country == 'New Caledonia', 'Country_Code'] = 'NCL'
cut_df.loc[cut_df.Country == 'New Zealand', 'Country_Code'] = 'NZL'
cut_df.loc[cut_df.Country == 'Nicaragua', 'Country_Code'] = 'NIC'
cut_df.loc[cut_df.Country == 'Norway', 'Country_Code'] = 'NOR'
cut_df.loc[cut_df.Country == 'Oman', 'Country_Code'] = 'OMN'
cut_df.loc[cut_df.Country == 'Pakistan', 'Country_Code'] = 'PAK'
cut_df.loc[cut_df.Country == 'Panama', 'Country_Code'] = 'PAN'
cut_df.loc[cut_df.Country == 'Paraguay', 'Country_Code'] = 'PRY'
cut_df.loc[cut_df.Country == 'Peru', 'Country_Code'] = 'PER'
cut_df.loc[cut_df.Country == 'Philippines', 'Country_Code'] = 'PHL'
cut_df.loc[cut_df.Country == 'Poland', 'Country_Code'] = 'POL'
cut_df.loc[cut_df.Country == 'Portugal', 'Country_Code'] = 'PRT'
cut_df.loc[cut_df.Country == 'Thailand', 'Country_Code'] = 'THA'
cut_df.loc[cut_df.Country == 'Timor-Leste', 'Country_Code'] = 'TLS'
cut_df.loc[cut_df.Country == 'Togo', 'Country_Code'] = 'TGO'
cut_df.loc[cut_df.Country == 'Trinidad and Tobago', 'Country_Code'] = 'TTO'
cut_df.loc[cut_df.Country == 'Tunisia', 'Country_Code'] = 'TUN'
cut_df.loc[cut_df.Country == 'Turkey', 'Country_Code'] = 'TUR'
cut_df.loc[cut_df.Country == 'Turkmenistan', 'Country_Code'] = 'TKM'
cut_df.loc[cut_df.Country == 'Uganda', 'Country_Code'] = 'UGA'
cut_df.loc[cut_df.Country == 'Ukraine', 'Country_Code'] = 'UKR'
cut_df.loc[cut_df.Country == 'United Arab Emirates', 'Country_Code'] = 'ARE'
cut_df.loc[cut_df.Country == 'United Kingdom', 'Country_Code'] = 'GBR'
cut_df.loc[cut_df.Country == 'United Republic of Tanzania', 'Country_Code'] = 'TZA'
# Need loop to put codes in Dataframe
fig = go.Figure(data=go.Choropleth(
locations = cut_df['Country_Code'],
z = cut_df['Death_Rate'],
text = cut_df['Country'],
colorscale = 'Reds',
autocolorscale=False,
reversescale=False,
marker_line_color='darkgray',
marker_line_width=0.5,
colorbar_tickprefix = '',
colorbar_title = 'Death Rate<br>Percentage %',
))
fig.update_layout(
title_text='Covid-19 Death Rates per Country',
autosize = False,
width = 800,
height = 800,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
We can observe that many of the highest Covid-19 Death Rates occur in either North America or overall in the Americas and in Europe. The lowest Covid-19 Death Rates occur in Africa, Asia, and Australia. This will be critical to our assessment of different regions and continents in our data analysis later. From these intial observations, we want to explore why the percentages in some of these regions and continents are higher then others. In the next portion, we will start to observe diet in terms of percentage of overall consumption of a particular food and the fat percentage of those foods.
Regions of the World And Covid Deaths
In order to get some insight about the regions in the world in terms of particular diets and patterns, let's look at some violin plot data based on a couple of features of our dataset including
We want to explore and closely observe the plotting of the above features based on 8 separate regions spread across the globe. This includes: Asia; the Middle East, North Africa, Greater Arabia; North America; Central America and the Caribbean; South America; Sub-Saharan Africa; and Australia and Oceania. Let's observe the patterns of these regions and whether these above features have a greater impact on the higher percentages Covid Deaths for those particular regions.
Fat Supply Quantity Dataset with Regions Added
# Creating a dataframe to include the regions of Countries
regions_covid_df = covid_df
food_regions_df = covid_food_df
regions_list = []
Asia = ['Bangladesh', 'Cambodia', 'China', 'India', 'Indonesia', 'Japan', 'Kazakhstan', 'Korea, North',
'Korea, South', 'Kyrgyzstan', "Lao People's Democratic Republic", 'Malaysia', 'Maldives', 'Mongolia', 'Myanmar', 'Nepal',
'Philippines', 'Sri Lanka', "Taiwan*", 'Tajikistan', 'Thailand', "Turkmenistan", 'Uzbekistan', 'Vietnam']
Middle_East_North_Africa_Greater_Arabia= ['Afghanistan', 'Algeria', 'Azerbaijan', 'Egypt', 'Iran (Islamic Republic of)', 'Iraq', 'Israel', 'Jordan',
'Kuwait', 'Lebanon', 'Morocco', 'Oman', 'Pakistan', 'Saudi Arabia', 'Tunisia', 'Turkey', 'United Arab Emirates', 'Yemen']
Europe = ['Albania', 'Armenia', 'Austria', 'Belarus', 'Belgium', 'Bosnia and Herzegovina', 'Bulgaria', 'Croatia', 'Cyprus',
'Czechia', 'Denmark', 'Estonia', 'Finland', 'France', 'Georgia', 'Germany', 'Greece', 'Hungary', 'Iceland',
'Ireland', 'Italy', "Latvia", 'Lithuania', 'Luxembourg', 'North Macedonia', 'Malta', 'Republic of Moldova', 'Montenegro', 'Netherlands',
'Norway', 'Poland', 'Portugal', 'Romania', 'Russian Federation', 'Serbia', 'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland',
'Ukraine', 'United Kingdom']
North_America = ['Canada', 'Mexico', "United States of America"]
Central_America_and_Caribbean = ['Antigua and Barbuda', 'Bahamas', 'Barbados', 'Belize', 'Costa Rica', 'Cuba', 'Dominica', 'Dominican Republic', 'El Salvador', 'Grenada',
'Guatemala', 'Haiti', 'Honduras', 'Jamaica', 'Nicaragua', 'Panama', 'Saint Kitts and Nevis', 'Saint Lucia',
'Saint Vincent and the Grenadines', 'Trinidad and Tobago']
South_America = ['Argentina', 'Bolivia', 'Brazil', 'Chile', 'Colombia', 'Ecuador','Guyana', 'Paraguay', 'Peru', 'Suriname', 'Uruguay', 'Venezuela (Bolivarian Republic of)']
Sub_Saharan_Africa = ['Angola', 'Benin', 'Botswana', 'Burkina Faso', 'Cabo Verde', 'Cameroon', 'Central African Republic', 'Chad',
'Congo', "Cote d'Ivoire", 'Djibouti', 'Eswatini', 'Ethiopia', 'Gabon', 'Gambia', 'Ghana', 'Guinea', 'Guinea-Bissau', 'Kenya', 'Lesotho', 'Liberia',
'Madagascar', 'Malawi', 'Mali', 'Mauritania', 'Mauritius', 'Mozambique', 'Namibia', 'Niger', 'Nigeria', 'Rwanda',
'Sao Tome and Principe', 'Senegal', 'Sierra Leone', 'South Africa', 'Sudan', 'United Republic of Tanzania',
'Togo', 'Uganda', 'Zambia', 'Zimbabwe']
Australia_and_Oceania = ['Australia', 'Fiji', 'French Polynesia', 'Kiribati', 'New Caledonia', 'New Zealand', 'Samoa', 'Solomon Islands', 'Timor-Leste', 'Vanuatu' ]
# Figuring out which countries are in which regions and then appending those to a list that will be combined into the dataframe
for i in regions_covid_df['Country']:
if i in Asia:
regions_list.append('Asia')
if i in Middle_East_North_Africa_Greater_Arabia:
regions_list.append('Middle East, North Africa, Greater Arabia')
if i in Europe:
regions_list.append('Europe')
if i in North_America:
regions_list.append('North America')
if i in Central_America_and_Caribbean:
regions_list.append('Central America, Caribbean')
if i in South_America:
regions_list.append('South America')
if i in Sub_Saharan_Africa:
regions_list.append('Sub-Saharan Africa')
if i in Australia_and_Oceania:
regions_list.append('Australia, Oceania')
# Fat Supply Quantity Dataset
regions_covid_df['Region'] = regions_list
# Food Quantity Dataset
food_regions_df['Region'] = regions_list
# Placed the Region column farther up front in the dataframe, next to the Country
regions_covid_df = regions_covid_df[['Country', 'Region', 'Alcoholic Beverages', 'Animal fats', 'Animal Products', 'Aquatic Products, Other',
'Cereals - Excluding Beer', 'Eggs', 'Fish, Seafood', 'Fruits - Excluding Wine', 'Meat',
'Miscellaneous', 'Milk - Excluding Butter', 'Vegetables', 'Offals', 'Oilcrops', 'Pulses', 'Spices',
'Starchy Roots', 'Stimulants', 'Sugar Crops', 'Sugar & Sweeteners', 'Treenuts',
'Vegetal Products', 'Vegetable Oils', 'Fruits - Excluding Wine', 'Deaths', 'Confirmed', 'Obesity', 'Undernourished',
'Population', 'Recovered', 'Active',
'Unit (all except Population)']]
regions_covid_df.head()
Country | Region | Alcoholic Beverages | Animal fats | Animal Products | Aquatic Products, Other | Cereals - Excluding Beer | Eggs | Fish, Seafood | Fruits - Excluding Wine | ... | Vegetable Oils | Fruits - Excluding Wine | Deaths | Confirmed | Obesity | Undernourished | Population | Recovered | Active | Unit (all except Population) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Afghanistan | Middle East, North Africa, Greater Arabia | 0.0 | 6.2224 | 21.6397 | 0.0 | 8.0353 | 0.6859 | 0.0327 | 0.4246 | ... | 17.0831 | 0.4246 | 0.006186 | 0.142134 | 4.5 | 29.8 | 38928000.0 | 0.123374 | 0.012574 | % |
1 | Albania | Europe | 0.0 | 3.4172 | 32.0002 | 0.0 | 2.6734 | 1.6448 | 0.1445 | 0.6418 | ... | 9.2443 | 0.6418 | 0.050951 | 2.967301 | 22.3 | 6.2 | 2838000.0 | 1.792636 | 1.123714 | % |
2 | Algeria | Middle East, North Africa, Greater Arabia | 0.0 | 0.8972 | 14.4175 | 0.0 | 4.2035 | 1.2171 | 0.2008 | 0.5772 | ... | 27.3606 | 0.5772 | 0.006558 | 0.244897 | 26.6 | 3.9 | 44357000.0 | 0.167572 | 0.070767 | % |
3 | Angola | Sub-Saharan Africa | 0.0 | 1.3130 | 15.3041 | 0.0 | 6.5545 | 0.1539 | 1.4155 | 0.3488 | ... | 22.4638 | 0.3488 | 0.001461 | 0.061687 | 6.8 | 25 | 32522000.0 | 0.056808 | 0.003419 | % |
4 | Antigua and Barbuda | Central America, Caribbean | 0.0 | 4.6686 | 27.7033 | 0.0 | 3.2153 | 0.3872 | 1.5263 | 1.2177 | ... | 14.4436 | 1.2177 | 0.007143 | 0.293878 | 19.1 | NaN | 98000.0 | 0.190816 | 0.095918 | % |
5 rows × 34 columns
Food Supply Quantity Dataset with Regions Added
food_regions_df = food_regions_df[['Country', 'Region', 'Alcoholic Beverages', 'Animal fats', 'Animal Products', 'Aquatic Products, Other',
'Cereals - Excluding Beer', 'Eggs', 'Fish, Seafood', 'Fruits - Excluding Wine', 'Meat',
'Miscellaneous', 'Milk - Excluding Butter', 'Vegetables', 'Offals', 'Oilcrops', 'Pulses', 'Spices',
'Starchy Roots', 'Stimulants', 'Sugar Crops', 'Sugar & Sweeteners', 'Treenuts',
'Vegetal Products', 'Vegetable Oils', 'Fruits - Excluding Wine', 'Deaths', 'Confirmed', 'Obesity', 'Undernourished',
'Population', 'Recovered', 'Active',
'Unit (all except Population)']]
food_regions_df.head()
Country | Region | Alcoholic Beverages | Animal fats | Animal Products | Aquatic Products, Other | Cereals - Excluding Beer | Eggs | Fish, Seafood | Fruits - Excluding Wine | ... | Vegetable Oils | Fruits - Excluding Wine | Deaths | Confirmed | Obesity | Undernourished | Population | Recovered | Active | Unit (all except Population) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Afghanistan | Middle East, North Africa, Greater Arabia | 0.0014 | 0.1973 | 9.4341 | 0.0 | 24.8097 | 0.2099 | 0.0350 | 5.3495 | ... | 0.5345 | 5.3495 | 0.006186 | 0.142134 | 4.5 | 29.8 | 38928000.0 | 0.123374 | 0.012574 | % |
1 | Albania | Europe | 1.6719 | 0.1357 | 18.7684 | 0.0 | 5.7817 | 0.5815 | 0.2126 | 6.7861 | ... | 0.3261 | 6.7861 | 0.050951 | 2.967301 | 22.3 | 6.2 | 2838000.0 | 1.792636 | 1.123714 | % |
2 | Algeria | Middle East, North Africa, Greater Arabia | 0.2711 | 0.0282 | 9.6334 | 0.0 | 13.6816 | 0.5277 | 0.2416 | 6.3801 | ... | 1.0310 | 6.3801 | 0.006558 | 0.244897 | 26.6 | 3.9 | 44357000.0 | 0.167572 | 0.070767 | % |
3 | Angola | Sub-Saharan Africa | 5.8087 | 0.0560 | 4.9278 | 0.0 | 9.1085 | 0.0587 | 1.7707 | 6.0005 | ... | 0.6463 | 6.0005 | 0.001461 | 0.061687 | 6.8 | 25 | 32522000.0 | 0.056808 | 0.003419 | % |
4 | Antigua and Barbuda | Central America, Caribbean | 3.5764 | 0.0087 | 16.6613 | 0.0 | 5.9960 | 0.2274 | 4.1489 | 10.7451 | ... | 0.8102 | 10.7451 | 0.007143 | 0.293878 | 19.1 | NaN | 98000.0 | 0.190816 | 0.095918 | % |
5 rows × 34 columns
Covid-19 Death Percentages Compared By Region
regions = regions_covid_df['Region'].unique()
region_data = regions_covid_df[['Country', 'Region', 'Deaths', 'Obesity', 'Meat', 'Pulses', 'Sugar & Sweeteners', 'Vegetables', 'Fruits - Excluding Wine', 'Undernourished', 'Population',
'Confirmed', 'Animal Products', 'Treenuts']]
food_regions_data = food_regions_df[['Country', 'Region', 'Deaths', 'Obesity', 'Meat', 'Pulses', 'Sugar & Sweeteners', 'Vegetables', 'Fruits - Excluding Wine', 'Undernourished', 'Population',
'Confirmed', 'Animal Products', 'Treenuts']]
fig = px.violin(region_data, x = 'Region', y='Deaths', points = 'all', color = 'Region', box = True)
fig.update_layout(
title_text='Covid Death Percentage For Each Region of the World',
autosize = False,
width = 1500,
height = 900,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
The above violin plot exhibits a consistent pattern similar to the chloropleth map that we observed previously. Before, we saw that North and South America and Europe had the highest Covid-19 Death Rates overall, while the Middle East, North Africa, Greater Arabia; Sub-Saharan Africa; Central America and the Caribbean; Australia and Oceania; and Asia had the lowest Covid-19 Death Rates. In this plot, we can see that Europe, South America, and North America have the highest medians and longest range (highest highs) of Covid-19 deaths compared to the other regions. Comparably, we can observe that the Middle East, North Africa, Greater Arabia; Sub-Saharan Africa; Central America and the Caribbean; Australia and Oceania; and Asia had the lowest lows of Covid-19 deaths compared to other regions. Let's keep this distribution over these regions in mind as we explore the food features of our dataset.
Obesity Percentages Compared By Region
fig = px.violin(region_data, x = 'Region', y='Obesity', points = 'all', color = 'Region', box = True)
fig.update_layout(
title_text='Obesity Percentage compared by each region of the World',
autosize = False,
width = 1500,
height = 900,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
Interaction Terms: Region, Covid Deaths, and Obesity
In order to explore the relationship between Covid Deaths and Obesity between the regions, we want to propose an interaction term between Deaths and Obesity which account for the specific regions. This will allow us to observe the deeper meaning behind a higher percentage of Covid-19 deaths.
model = smf.ols(formula='Deaths ~ Obesity + C(Region) + Deaths:Obesity', data=region_data).fit()
summary = model.summary()
print(summary)
OLS Regression Results ============================================================================== Dep. Variable: Deaths R-squared: 0.974 Model: OLS Adj. R-squared: 0.973 Method: Least Squares F-statistic: 639.2 Date: Mon, 20 Dec 2021 Prob (F-statistic): 1.43e-116 Time: 16:39:09 Log-Likelihood: 559.32 No. Observations: 163 AIC: -1099. Df Residuals: 153 BIC: -1068. Df Model: 9 Covariance Type: nonrobust ========================================================================================================================== coef std err t P>|t| [0.025 0.975] -------------------------------------------------------------------------------------------------------------------------- Intercept 0.0085 0.002 4.041 0.000 0.004 0.013 C(Region)[T.Australia, Oceania] 0.0073 0.004 1.756 0.081 -0.001 0.016 C(Region)[T.Central America, Caribbean] 0.0078 0.003 2.514 0.013 0.002 0.014 C(Region)[T.Europe] 0.0110 0.003 3.424 0.001 0.005 0.017 C(Region)[T.Middle East, North Africa, Greater Arabia] 0.0050 0.003 1.515 0.132 -0.002 0.012 C(Region)[T.North America] -0.0173 0.006 -2.813 0.006 -0.029 -0.005 C(Region)[T.South America] 0.0143 0.004 4.054 0.000 0.007 0.021 C(Region)[T.Sub-Saharan Africa] -0.0003 0.002 -0.120 0.905 -0.005 0.004 Obesity -0.0006 0.000 -4.878 0.000 -0.001 -0.000 Deaths:Obesity 0.0386 0.001 46.833 0.000 0.037 0.040 ============================================================================== Omnibus: 17.285 Durbin-Watson: 1.824 Prob(Omnibus): 0.000 Jarque-Bera (JB): 56.823 Skew: 0.224 Prob(JB): 4.58e-13 Kurtosis: 5.858 Cond. No. 260. ============================================================================== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
T.North America, T.South America, T.Europe, T.Central America, Caribbean; have a p-value that is less than 0.05, which concludes that these regions because of their higher obesity may result in an increased chance of death from COVID-19.
T.Australia, Oceania; T.Middle East, North Africa, Greater Arabia; and T.Sub-Saharan Africa have a p-value that is greater than 0.05, which concludes that these regions because of their lower obesity decreases the chance of death from COVID-19.
Note: You may observe in multiple OLS analyses that there is a region missing from the model's summary. This is totally normal, as this is something that OLS does, where it will drop a variable.
Meat by Region
The first feature we will be observing from our dataset will be Meat. According to the dataset, the Meat data from this dataset consists of percentage of fat and consumption percentages of Bovine Meat; Meat, Other; Mutton & Goat Meat; Pigmeat; Poultry Meat. Though meat can be a healthy source of protein, it is often overeaten in large portions, some of which can be quite fatty. This can cause an increased risk of heart disease, and high cholesterol levels [6]. Because of this, we want to explore the trends between Covid-19 Deaths, Meat consumption, and fat percentages.
Meat Fat Percentages Compared By Region
fig = px.violin(region_data, x = 'Region', y='Meat', points = 'all', color = 'Region', box = True)
fig.update_layout(
title_text='Meat Fat Percentage compared by each region of the World',
autosize = False,
width = 1500,
height = 900,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
Meat Consumption Percentages Compared By Region
fig = px.violin(food_regions_data, x = 'Region', y='Meat', points = 'all', color = 'Region', box = True)
fig.update_layout(
title_text='Meat Consumption Percentage compared by each region of the World',
autosize = False,
width = 1500,
height = 900,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
We can observe that in both violin plots, there is a higher percentage of the consumption of Meat and fat from Meat from the regions Europe; North and South America; Central America, Caribbean; and Australia, Oceania while the lowest consumption and fat percentage of Meat were from the regions Middle East, North Africa, Greater Arabia; Sub-Saharan Africa; and Asia.
Vegetables
The second feature we will be observing from our dataset will be Vegetables. According to the dataset, the Vegetable data from this dataset consists of percentage of fat and consumption percentages of Onions; Tomatoes and products; Vegetables, Other. Vegetables are essential to a healthy and balanced diet, which contribute to an increase in nutrients since Vegetables are "full of essential vitmains, minerals, and antioxidants". Various health benefits include improved digestive health, lower blood pressure, and lower risk of heart disease [4]. Because of this, we want to explore the trends between Covid-19 Deaths, Vegetable consumption, and fat percentages.
Vegetable Fat Percentages Compared By Region
fig = px.violin(region_data, x = 'Region', y='Vegetables', points = 'all', color = 'Region', box = True)
fig.update_layout(
title_text='Vegetable Fat Percentage compared by each region of the World',
autosize = False,
width = 1500,
height = 900,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
Vegetable Consumption Percentages Compared By Region
fig = px.violin(food_regions_data, x = 'Region', y='Vegetables', points = 'all', color = 'Region', box = True)
fig.update_layout(
title_text='Vegetable Consumption Percentage compared by each region of the World',
autosize = False,
width = 1500,
height = 900,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
We can observe that in both violin plots, there is a lower percentage of the consumption of Vegetables and fat from Vegetables from the regions Europe; South America; Central America, Caribbean; Sub-Saharan Africa, and Australia, Oceania while the highest consumption and fat percentage of Vegetables were from the regions Middle East, North Africa, Greater Arabia; North America; and Asia.
Animal Products
The third feature we will be observing from our dataset will be Animal Products. According to the dataset, the Animal Products data from this dataset consists of percentage of fat and consumption percentages of Aquatic Animals, Others; Aquatic Plants; Bovine Meat; Butter, Ghee; Cephalopods; Cream; Crustaceans; Demersal Fish; Eggs; Fats, Animals, Raw; Fish, Body Oil; Fish, Liver Oil; Freshwater Fish; Marine Fish, Other; Meat, Aquatic Mammals; Meat, Other; Milk - Excluding Butter; Molluscs, Other; Mutton & Goat Meat; Offals, Edible; Pelagic Fish; Pigmeat; Poultry Meat. Many Animal Products are benefical for protein consumption and nutritional value, but Animal Products can contain a lot of fat, and when in larger portions is unhealthy. According to the WHO, "excessive amounts of animal products may lead to premature aging, incrased risk of chronic disease, and higher all-cause mortality" [5]. Because of this, we want to explore the trends between Covid-19 Deaths, Animal Product consumption, and fat percentages.
Animal Products Fat Percentages Compared By Region
fig = px.violin(region_data, x = 'Region', y='Animal Products', points = 'all', color = 'Region', box = True)
fig.update_layout(
title_text='Animal Products Fat Percentage compared by each region of the World',
autosize = False,
width = 1500,
height = 900,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
Animal Products Consumption Percentages Compared By Region
fig = px.violin(food_regions_data, x = 'Region', y='Animal Products', points = 'all', color = 'Region', box = True)
fig.update_layout(
title_text='Animal Product Consumption Percentage compared by each region of the World',
autosize = False,
width = 1500,
height = 900,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
We can observe that in both violin plots, there is a higher percentage of the consumption of Animal Products and fat from Animal Products from the regions Europe; North and South America; Central America, Caribbean; Sub-Saharan Africa while the lowest consumption and fat percentage of Animal Products were from the regions Middle East, North Africa, Greater Arabia; Sub-Saharan Africa; Austrialia, Oceania; and Asia.
Continents of the World And Covid Deaths
In this section of the project, we will analyze the same features of the dataset: Meat, Vegetables, and Animal Products in order to draw conclusions about fighting Covid-19 with a healthier diet. Instead, we will separate the dataset into Continents to further observe the patterns of Covid-19 and these 3 features in the dataset.
Fat Supply Quantity Dataset with Continent Added
Asia = ['Afghanistan', 'Bangladesh', 'Cambodia', 'China', 'India', 'Indonesia', 'Japan', 'Kazakhstan', 'Korea, North',
'Korea, South', 'Kyrgyzstan', "Lao People's Democratic Republic", 'Malaysia', 'Maldives', 'Mongolia', 'Myanmar', 'Nepal',
'Philippines', 'Sri Lanka', "Taiwan*", 'Tajikistan', 'Thailand', "Turkmenistan", 'Uzbekistan', 'Vietnam',
'Iran (Islamic Republic of)', 'Iraq', 'Israel', 'Jordan','Kuwait','Lebanon', 'Oman', 'Pakistan', 'Saudi Arabia', 'Yemen',
'United Arab Emirates']
Europe = ['Albania', 'Armenia', 'Austria', 'Belarus', 'Belgium', 'Bosnia and Herzegovina', 'Bulgaria', 'Croatia', 'Cyprus',
'Czechia', 'Denmark', 'Estonia', 'Finland', 'France', 'Georgia', 'Germany', 'Greece', 'Hungary', 'Iceland',
'Ireland', 'Italy', "Latvia", 'Lithuania', 'Luxembourg', 'North Macedonia', 'Malta', 'Republic of Moldova', 'Montenegro', 'Netherlands',
'Norway', 'Poland', 'Portugal', 'Romania', 'Russian Federation', 'Serbia', 'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland',
'Ukraine', 'United Kingdom', 'Turkey','Azerbaijan']
Americas = ['Canada', 'Mexico', "United States of America", 'Argentina', 'Bolivia', 'Brazil', 'Chile', 'Colombia', 'Ecuador','Guyana', 'Paraguay', 'Peru',
'Suriname', 'Uruguay', 'Venezuela (Bolivarian Republic of)','Antigua and Barbuda', 'Bahamas', 'Barbados', 'Belize', 'Costa Rica', 'Cuba', 'Dominica', 'Dominican Republic', 'El Salvador', 'Grenada',
'Guatemala', 'Haiti', 'Honduras', 'Jamaica', 'Nicaragua', 'Panama', 'Saint Kitts and Nevis', 'Saint Lucia',
'Saint Vincent and the Grenadines', 'Trinidad and Tobago']
Africa = ['Algeria','Angola', 'Benin', 'Botswana', 'Burkina Faso', 'Cabo Verde', 'Cameroon', 'Central African Republic', 'Chad',
'Congo', "Cote d'Ivoire", 'Djibouti', 'Egypt','Eswatini', 'Ethiopia', 'Gabon', 'Gambia', 'Ghana', 'Guinea', 'Guinea-Bissau', 'Kenya', 'Lesotho', 'Liberia',
'Madagascar', 'Malawi', 'Mali', 'Mauritania', 'Mauritius', 'Mozambique', 'Namibia', 'Niger', 'Nigeria', 'Rwanda',
'Sao Tome and Principe', 'Senegal', 'Sierra Leone', 'South Africa', 'Sudan', 'United Republic of Tanzania',
'Togo', 'Uganda', 'Zambia', 'Zimbabwe','Morocco', 'Tunisia']
Oceania = ['Australia', 'Fiji', 'French Polynesia', 'Kiribati', 'New Caledonia', 'New Zealand', 'Samoa', 'Solomon Islands', 'Timor-Leste', 'Vanuatu' ]
continent_list = []
for i in regions_covid_df['Country']:
if i in Asia:
continent_list.append('Asia')
if i in Africa:
continent_list.append('Africa')
if i in Europe:
continent_list.append('Europe')
if i in Americas:
continent_list.append('Americas')
if i in Australia_and_Oceania:
continent_list.append('Oceania')
# Fat Percentage Dataset
regions_covid_df['Continent'] = continent_list
# Food Supply Dataset
food_regions_df['Continent'] = continent_list
continent_data = regions_covid_df[['Country', 'Continent', 'Region', 'Deaths', 'Obesity', 'Meat', 'Pulses', 'Sugar & Sweeteners', 'Vegetables', 'Fruits - Excluding Wine', 'Undernourished', 'Population',
'Confirmed', 'Animal Products']]
continent_data.head()
Country | Continent | Region | Deaths | Obesity | Meat | Pulses | Sugar & Sweeteners | Vegetables | Fruits - Excluding Wine | Fruits - Excluding Wine | Undernourished | Population | Confirmed | Animal Products | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Afghanistan | Asia | Middle East, North Africa, Greater Arabia | 0.006186 | 4.5 | 6.1244 | 0.1960 | 0.0 | 0.3593 | 0.4246 | 0.4246 | 29.8 | 38928000.0 | 0.142134 | 21.6397 |
1 | Albania | Europe | Europe | 0.050951 | 22.3 | 8.7428 | 0.1148 | 0.0 | 0.6503 | 0.6418 | 0.6418 | 6.2 | 2838000.0 | 2.967301 | 32.0002 |
2 | Algeria | Africa | Middle East, North Africa, Greater Arabia | 0.006558 | 26.6 | 3.8961 | 0.2698 | 0.0 | 0.5145 | 0.5772 | 0.5772 | 3.9 | 44357000.0 | 0.244897 | 14.4175 |
3 | Angola | Africa | Sub-Saharan Africa | 0.001461 | 6.8 | 11.0268 | 0.3282 | 0.0 | 0.1231 | 0.3488 | 0.3488 | 25 | 32522000.0 | 0.061687 | 15.3041 |
4 | Antigua and Barbuda | Americas | Central America, Caribbean | 0.007143 | 19.1 | 14.3202 | 0.0673 | 0.0 | 0.2469 | 1.2177 | 1.2177 | NaN | 98000.0 | 0.293878 | 27.7033 |
Food Supply Quantity Dataset with Continent Added
food_continent_data = food_regions_df[['Country', 'Continent', 'Region', 'Deaths', 'Obesity', 'Meat', 'Pulses', 'Sugar & Sweeteners', 'Vegetables', 'Fruits - Excluding Wine', 'Undernourished', 'Population',
'Confirmed', 'Animal Products', 'Treenuts']]
food_continent_data.head()
Country | Continent | Region | Deaths | Obesity | Meat | Pulses | Sugar & Sweeteners | Vegetables | Fruits - Excluding Wine | Fruits - Excluding Wine | Undernourished | Population | Confirmed | Animal Products | Treenuts | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Afghanistan | Asia | Middle East, North Africa, Greater Arabia | 0.006186 | 4.5 | 1.2020 | 0.2953 | 1.3489 | 6.7642 | 5.3495 | 5.3495 | 29.8 | 38928000.0 | 0.142134 | 9.4341 | 0.0770 |
1 | Albania | Europe | Europe | 0.050951 | 22.3 | 1.8845 | 0.2380 | 1.5367 | 11.7753 | 6.7861 | 6.7861 | 6.2 | 2838000.0 | 2.967301 | 18.7684 | 0.1515 |
2 | Algeria | Africa | Middle East, North Africa, Greater Arabia | 0.006558 | 26.6 | 1.1305 | 0.4783 | 1.8342 | 11.6484 | 6.3801 | 6.3801 | 3.9 | 44357000.0 | 0.244897 | 9.6334 | 0.1152 |
3 | Angola | Africa | Sub-Saharan Africa | 0.001461 | 6.8 | 2.0571 | 0.6507 | 1.8495 | 2.3041 | 6.0005 | 6.0005 | 25 | 32522000.0 | 0.061687 | 4.9278 | 0.0061 |
4 | Antigua and Barbuda | Americas | Central America, Caribbean | 0.007143 | 19.1 | 5.6888 | 0.1840 | 3.8749 | 5.4495 | 10.7451 | 10.7451 | NaN | 98000.0 | 0.293878 | 16.6613 | 0.0253 |
Covid-19 Death Rate Compared By Continent
fig = px.violin(continent_data, x = 'Continent', y='Deaths', points = 'all', color = 'Continent', box = True)
fig.update_layout(
title_text='Covid Death Percentage compared by each Continent of the World',
autosize = False,
width = 1500,
height = 900,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
The above violin plot exhibits a consistent pattern similar to the chloropleth map that we observed previously. Before, we saw that the Americas and Europe had the highest Covid-19 Death Rates overall, while Africa, Asia, and Oceania had the lowest Covid-19 Death Rates. In this plot, we can see that Europe and the Americas have the highest medians and longest range (highest highs) of Covid-19 deaths compared to the other continents. Comparably, we can observe that the Africa, Asia, and Ocenia have the (lowest lows) of Covid-19 deaths compard to other continents. Let's keep this distribution over these continents in mind as we explore the food features of our dataset.
Obesity Percentages Compared By Continent
fig = px.violin(continent_data, x = 'Continent', y='Obesity', points = 'all', color = 'Continent', box = True)
fig.update_layout(
title_text='Obesity Percentage compared by each Continent of the World',
autosize = False,
width = 1500,
height = 900,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
Interaction Terms: Covid-19 Deaths, Obesity, and Continent
In order to explore the relationship between Covid Deaths and Obesity between the continents, we want to propose an interaction term between Deaths and Obesity which account for the specific continents. This will allow us to observe the deeper meaning behind a higher percentage of Covid-19 deaths.
model = smf.ols(formula='Deaths ~ Obesity + C(Continent) + Deaths:Obesity', data=continent_data).fit()
summary = model.summary()
print(summary)
OLS Regression Results ============================================================================== Dep. Variable: Deaths R-squared: 0.967 Model: OLS Adj. R-squared: 0.966 Method: Least Squares F-statistic: 769.7 Date: Mon, 20 Dec 2021 Prob (F-statistic): 3.82e-113 Time: 16:39:10 Log-Likelihood: 540.40 No. Observations: 163 AIC: -1067. Df Residuals: 156 BIC: -1045. Df Model: 6 Covariance Type: nonrobust ============================================================================================ coef std err t P>|t| [0.025 0.975] -------------------------------------------------------------------------------------------- Intercept 0.0083 0.002 4.785 0.000 0.005 0.012 C(Continent)[T.Americas] 0.0074 0.002 3.023 0.003 0.003 0.012 C(Continent)[T.Asia] 0.0010 0.002 0.476 0.635 -0.003 0.005 C(Continent)[T.Europe] 0.0113 0.003 4.261 0.000 0.006 0.017 C(Continent)[T.Oceania] 0.0057 0.004 1.418 0.158 -0.002 0.014 Obesity -0.0005 0.000 -4.988 0.000 -0.001 -0.000 Deaths:Obesity 0.0377 0.001 46.380 0.000 0.036 0.039 ============================================================================== Omnibus: 43.657 Durbin-Watson: 1.756 Prob(Omnibus): 0.000 Jarque-Bera (JB): 492.449 Skew: -0.496 Prob(JB): 1.16e-107 Kurtosis: 11.457 Cond. No. 134. ============================================================================== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
T.Americas and T.Europe have a p-value that is less than 0.05, which concludes that these regions have more obesity which may lead to higher likelihood of death from COVID-19.
T.Asia; T.Oceania have a p-value that is greater than 0.05, which concludes that these regions have less obesity thus decreasing the chance of death from COVID-19.
Note: You may observe in multiple OLS analyses that there is a continent missing from the model's summary. This is totally normal, as this is something that OLS does, where it will drop a variable.
Meat
Meat Fat Percentages Compared By Continent
fig = px.violin(continent_data, x = 'Continent', y='Meat', points = 'all', color = 'Continent', box = True)
fig.update_layout(
title_text='Meat Fat Percentage compared by each Continent of the World',
autosize = False,
width = 1500,
height = 900,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
Meat Consumption Percentages Compared By Continent
fig = px.violin(food_continent_data, x = 'Continent', y='Meat', points = 'all', color = 'Continent', box = True)
fig.update_layout(
title_text='Meat Consumption Percentage compared by each Continent of the World',
autosize = False,
width = 1500,
height = 900,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
We can observe that in both violin plots, there is a higher percentage of the consumption of Meat and fat from Meat from the continents Europe, the Americas, and Oceania while the lowest consumption and fat percentage of Meat were from the continents Asia and Africa.
Vegetables
Vegetable Fat Percentages Compared By Continent
fig = px.violin(continent_data, x = 'Continent', y='Vegetables', points = 'all', color = 'Continent', box = True)
fig.update_layout(
title_text='Vegetables Fat Consumption compared by each Continent of the World',
autosize = False,
width = 1500,
height = 900,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
Vegetable Consumption Percentages Compared By Continent
fig = px.violin(food_continent_data, x = 'Continent', y='Vegetables', points = 'all', color = 'Continent', box = True)
fig.update_layout(
title_text='Vegetables Consumption compared by each Continent of the World',
autosize = False,
width = 1500,
height = 900,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
We can observe that in both violin plots, there is a higher percentage of the consumption of Vegetables and fat from Vegetables from the continents Asia, while the lowest consumption and fat percentage of Vegetables were from the other continents Africa, Europe, Americas, and Oceania.
Animal Products
Animal Product Fat Percentages Compared By Continent
fig = px.violin(continent_data, x = 'Continent', y='Animal Products', points = 'all', color = 'Continent', box = True)
fig.update_layout(
title_text='Animal Products Fat Consumption compared by each Continent of the World',
autosize = False,
width = 1500,
height = 900,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
Animal Products Consumption Percentages Compared By Continent
fig = px.violin(food_continent_data, x = 'Continent', y='Animal Products', points = 'all', color = 'Continent', box = True)
fig.update_layout(
title_text='Animal Products Consumption compared by each Continent of the World',
autosize = False,
width = 1500,
height = 900,
geo=dict(
showframe=False,
showcoastlines=False,
projection_type='equirectangular'
))
fig.show()
We can observe that in both violin plots, there is a higher percentage of the consumption of Animal Products and fat from Animal Products from the continents Europe and the Americas, while the lowest consumption and fat percentage of Animal Products were from the continents Asia, Africa, and Oceania.
Interaction Terms between Covid-19 Deaths and Obesity for Dataset features Meat, Animal Products, and Vegetables for Regions and Continents of the World
In order to measure the significance between the effect of Covid-19 Deaths and Diet, we explored interaction terms between Obesity, Meat, Vegetables, and Animal Products for regions and continents. We know that Obesity is one of the leading factors of decreased health and increased susceptibility to illness. How does this factor into the diets of particular regions and continents? We will observe the significance of this question in the below analysis of regression and interaction terms.
Interaction Terms: Covid-19 Deaths, Obesity, Meat Consumption by Region and Continent
model = smf.ols(formula='Deaths ~ Obesity + Meat + C(Region) + Obesity:Meat', data=food_regions_df).fit()
summary = model.summary()
print(summary)
OLS Regression Results ============================================================================== Dep. Variable: Deaths R-squared: 0.603 Model: OLS Adj. R-squared: 0.577 Method: Least Squares F-statistic: 23.11 Date: Mon, 20 Dec 2021 Prob (F-statistic): 6.67e-26 Time: 16:39:10 Log-Likelihood: 336.92 No. Observations: 163 AIC: -651.8 Df Residuals: 152 BIC: -617.8 Df Model: 10 Covariance Type: nonrobust ========================================================================================================================== coef std err t P>|t| [0.025 0.975] -------------------------------------------------------------------------------------------------------------------------- Intercept -0.0005 0.013 -0.037 0.971 -0.026 0.025 C(Region)[T.Australia, Oceania] -0.0175 0.016 -1.074 0.285 -0.050 0.015 C(Region)[T.Central America, Caribbean] 0.0079 0.012 0.647 0.519 -0.016 0.032 C(Region)[T.Europe] 0.0770 0.012 6.636 0.000 0.054 0.100 C(Region)[T.Middle East, North Africa, Greater Arabia] 0.0124 0.014 0.914 0.362 -0.014 0.039 C(Region)[T.North America] 0.0853 0.023 3.765 0.000 0.041 0.130 C(Region)[T.South America] 0.0541 0.013 4.011 0.000 0.027 0.081 C(Region)[T.Sub-Saharan Africa] 0.0019 0.009 0.218 0.828 -0.016 0.019 Obesity 0.0005 0.001 0.645 0.520 -0.001 0.002 Meat 0.0001 0.004 0.038 0.969 -0.007 0.008 Obesity:Meat 3.285e-05 0.000 0.186 0.853 -0.000 0.000 ============================================================================== Omnibus: 9.016 Durbin-Watson: 2.289 Prob(Omnibus): 0.011 Jarque-Bera (JB): 17.259 Skew: 0.148 Prob(JB): 0.000179 Kurtosis: 4.566 Cond. No. 1.11e+03 ============================================================================== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.11e+03. This might indicate that there are strong multicollinearity or other numerical problems.
Europe, North America, and South America consume more meat than other regions of the world. This leads to higher obesity rates since people around these regions are consuming more meat than other food sources.
T.Australia, Oceania, T.Central America, Caribbean, T.Middle East, North Africa, Greater Arabia, T.Sub-Saharan Africa are consuming less meat than the other regions of the world. Since the p-value for these regions are greater than 0.05, it concludes that the people in these regions are consuming less meat, which decreases their chances of getting obese to lessen the risk of death from COVID-19.
model = smf.ols(formula='Deaths ~ Obesity + Meat + C(Continent) + Obesity:Meat', data=food_continent_data).fit()
summary = model.summary()
print(summary)
OLS Regression Results ============================================================================== Dep. Variable: Deaths R-squared: 0.520 Model: OLS Adj. R-squared: 0.498 Method: Least Squares F-statistic: 23.95 Date: Mon, 20 Dec 2021 Prob (F-statistic): 7.07e-22 Time: 16:39:10 Log-Likelihood: 321.34 No. Observations: 163 AIC: -626.7 Df Residuals: 155 BIC: -601.9 Df Model: 7 Covariance Type: nonrobust ============================================================================================ coef std err t P>|t| [0.025 0.975] -------------------------------------------------------------------------------------------- Intercept 0.0040 0.011 0.354 0.724 -0.018 0.026 C(Continent)[T.Americas] 0.0228 0.010 2.263 0.025 0.003 0.043 C(Continent)[T.Asia] 0.0009 0.008 0.114 0.910 -0.015 0.017 C(Continent)[T.Europe] 0.0669 0.009 7.061 0.000 0.048 0.086 C(Continent)[T.Oceania] -0.0276 0.016 -1.770 0.079 -0.058 0.003 Obesity 0.0005 0.001 0.712 0.478 -0.001 0.002 Meat -0.0024 0.004 -0.595 0.553 -0.010 0.006 Obesity:Meat 0.0002 0.000 0.900 0.370 -0.000 0.001 ============================================================================== Omnibus: 6.123 Durbin-Watson: 2.152 Prob(Omnibus): 0.047 Jarque-Bera (JB): 5.927 Skew: 0.368 Prob(JB): 0.0516 Kurtosis: 3.576 Cond. No. 612. ============================================================================== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
T.Americas and T.Europe have a p-value that is less than 0.05, which concludes that these continents consume more meat that may lead to higher increase of obesity. Additionally, higher increases in obesity may result in an increased chance of death from COVID-19.
T.Asia and T.Oceania have a p-value that is greater than 0.05, which concludes that these continents do not consume as much meat which may decrease the chances of obesity, thus decreasing the chance of death from COVID-19.
Interaction Terms: Covid-19 Deaths, Obesity, Animal Products Consumption
food_regions_df.columns.values[5] = "AnimalProducts"
model = smf.ols(formula='Deaths ~ Obesity + C(Region) + AnimalProducts + Obesity:Vegetables', data=food_regions_df).fit()
summary = model.summary()
print(summary)
OLS Regression Results ============================================================================== Dep. Variable: Deaths R-squared: 0.603 Model: OLS Adj. R-squared: 0.577 Method: Least Squares F-statistic: 23.06 Date: Mon, 20 Dec 2021 Prob (F-statistic): 7.30e-26 Time: 16:39:11 Log-Likelihood: 336.82 No. Observations: 163 AIC: -651.6 Df Residuals: 152 BIC: -617.6 Df Model: 10 Covariance Type: nonrobust ========================================================================================================================== coef std err t P>|t| [0.025 0.975] -------------------------------------------------------------------------------------------------------------------------- Intercept -0.0009 0.008 -0.102 0.919 -0.018 0.016 C(Region)[T.Australia, Oceania] -0.0172 0.017 -1.010 0.314 -0.051 0.016 C(Region)[T.Central America, Caribbean] 0.0083 0.013 0.654 0.514 -0.017 0.033 C(Region)[T.Europe] 0.0764 0.012 6.583 0.000 0.053 0.099 C(Region)[T.Middle East, North Africa, Greater Arabia] 0.0106 0.013 0.801 0.425 -0.016 0.037 C(Region)[T.North America] 0.0859 0.023 3.755 0.000 0.041 0.131 C(Region)[T.South America] 0.0543 0.014 3.911 0.000 0.027 0.082 C(Region)[T.Sub-Saharan Africa] 0.0017 0.009 0.184 0.855 -0.016 0.020 Obesity 0.0007 0.001 1.230 0.221 -0.000 0.002 AnimalProducts -1.688e-05 0.019 -0.001 0.999 -0.038 0.038 Obesity:Vegetables 3.026e-06 4.18e-05 0.072 0.942 -7.95e-05 8.56e-05 ============================================================================== Omnibus: 8.939 Durbin-Watson: 2.278 Prob(Omnibus): 0.011 Jarque-Bera (JB): 17.046 Skew: 0.146 Prob(JB): 0.000199 Kurtosis: 4.557 Cond. No. 1.92e+03 ============================================================================== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.92e+03. This might indicate that there are strong multicollinearity or other numerical problems.
T.North America, T.South America and T.Europe have a p-value that is less than 0.05, which concludes that these regions consume more Animal Products which may lead to higher likelihood of obesity. Additionally, higher likelihood of obesity may result in an increased chance of death from COVID-19.
T.Asia; T.Australia, Oceania; T.Central America, Caribbean; T.Middle East, North Africa, Greater Arabia; and T.Sub-Saharan Africa have a p-value that is greater than 0.05, which concludes that these regions consume less Animal Products which may decrease the chances of obesity, thus decreasing the chance of death from COVID-19.
food_continent_data.columns.values[15] = "AnimalProducts"
model = smf.ols(formula='Deaths ~ Obesity + C(Continent) + AnimalProducts + Obesity:Vegetables', data=food_continent_data).fit()
summary = model.summary()
print(summary)
OLS Regression Results ============================================================================== Dep. Variable: Deaths R-squared: 0.525 Model: OLS Adj. R-squared: 0.503 Method: Least Squares F-statistic: 24.46 Date: Mon, 20 Dec 2021 Prob (F-statistic): 3.10e-22 Time: 16:39:11 Log-Likelihood: 322.23 No. Observations: 163 AIC: -628.5 Df Residuals: 155 BIC: -603.7 Df Model: 7 Covariance Type: nonrobust ============================================================================================ coef std err t P>|t| [0.025 0.975] -------------------------------------------------------------------------------------------- Intercept -0.0058 0.007 -0.855 0.394 -0.019 0.008 C(Continent)[T.Americas] 0.0229 0.010 2.357 0.020 0.004 0.042 C(Continent)[T.Asia] -0.0003 0.008 -0.036 0.971 -0.017 0.016 C(Continent)[T.Europe] 0.0649 0.009 7.106 0.000 0.047 0.083 C(Continent)[T.Oceania] -0.0276 0.016 -1.731 0.085 -0.059 0.004 Obesity 0.0013 0.001 2.434 0.016 0.000 0.002 AnimalProducts 0.0309 0.020 1.549 0.123 -0.009 0.070 Obesity:Vegetables -3.418e-05 4.35e-05 -0.786 0.433 -0.000 5.17e-05 ============================================================================== Omnibus: 5.804 Durbin-Watson: 2.216 Prob(Omnibus): 0.055 Jarque-Bera (JB): 5.684 Skew: 0.341 Prob(JB): 0.0583 Kurtosis: 3.610 Cond. No. 1.16e+03 ============================================================================== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.16e+03. This might indicate that there are strong multicollinearity or other numerical problems.
T.Americas and T.Europe have a p-value that is less than 0.05, which concludes that these continents consume more Animal Products which may lead to higher likelihood of obesity. Additionally, higher likelihood of obesity may result in an increased chance of death from COVID-19.
T.Asia and T.Oceania have a p-value that is greater than 0.05, which concludes that these continents consume less Animal Products which may decrease the chances of obesity, thus decreasing the chance of death from COVID-19.
Interaction Terms: Covid-19 Deaths, Obesity, Vegetable Consumption for Region and Continent
model = smf.ols(formula='Deaths ~ Obesity + Vegetables + C(Region) + Obesity:Vegetables', data=food_regions_df).fit()
summary = model.summary()
print(summary)
OLS Regression Results ============================================================================== Dep. Variable: Deaths R-squared: 0.603 Model: OLS Adj. R-squared: 0.577 Method: Least Squares F-statistic: 23.06 Date: Mon, 20 Dec 2021 Prob (F-statistic): 7.30e-26 Time: 16:39:11 Log-Likelihood: 336.82 No. Observations: 163 AIC: -651.6 Df Residuals: 152 BIC: -617.6 Df Model: 10 Covariance Type: nonrobust ========================================================================================================================== coef std err t P>|t| [0.025 0.975] -------------------------------------------------------------------------------------------------------------------------- Intercept -0.0010 0.015 -0.066 0.948 -0.031 0.029 C(Region)[T.Australia, Oceania] -0.0171 0.017 -0.996 0.321 -0.051 0.017 C(Region)[T.Central America, Caribbean] 0.0083 0.013 0.638 0.525 -0.017 0.034 C(Region)[T.Europe] 0.0764 0.012 6.361 0.000 0.053 0.100 C(Region)[T.Middle East, North Africa, Greater Arabia] 0.0107 0.014 0.750 0.454 -0.017 0.039 C(Region)[T.North America] 0.0859 0.023 3.720 0.000 0.040 0.132 C(Region)[T.South America] 0.0543 0.014 3.837 0.000 0.026 0.082 C(Region)[T.Sub-Saharan Africa] 0.0017 0.010 0.170 0.865 -0.018 0.022 Obesity 0.0007 0.001 1.000 0.319 -0.001 0.002 Vegetables 1.923e-05 0.002 0.011 0.991 -0.004 0.004 Obesity:Vegetables 2.191e-06 8.8e-05 0.025 0.980 -0.000 0.000 ============================================================================== Omnibus: 8.937 Durbin-Watson: 2.278 Prob(Omnibus): 0.011 Jarque-Bera (JB): 17.041 Skew: 0.146 Prob(JB): 0.000199 Kurtosis: 4.557 Cond. No. 2.02e+03 ============================================================================== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 2.02e+03. This might indicate that there are strong multicollinearity or other numerical problems.
T.North America, T.South America and T.Europe have a p-value that is less than 0.05, which concludes that these regions consume less vegetables which may lead to higher likelihood of obesity. Additionally, higher likelihood of obesity may result in an increased chance of death from COVID-19.
T.Asia; T.Australia, Oceania; T.Central America, Caribbean; T.Middle East, North Africa, Greater Arabia; and T.Sub-Saharan Africa have a p-value that is greater than 0.05, which concludes that these regions consume more vegetables which may decrease the chances of obesity, thus decreasing the chance of death from COVID-19.
model = smf.ols(formula='Deaths ~ Obesity + C(Continent) + Vegetables + Obesity:Vegetables', data=food_continent_data).fit()
summary = model.summary()
print(summary)
OLS Regression Results ============================================================================== Dep. Variable: Deaths R-squared: 0.518 Model: OLS Adj. R-squared: 0.496 Method: Least Squares F-statistic: 23.76 Date: Mon, 20 Dec 2021 Prob (F-statistic): 9.77e-22 Time: 16:39:11 Log-Likelihood: 320.99 No. Observations: 163 AIC: -626.0 Df Residuals: 155 BIC: -601.2 Df Model: 7 Covariance Type: nonrobust ============================================================================================ coef std err t P>|t| [0.025 0.975] -------------------------------------------------------------------------------------------- Intercept -0.0049 0.011 -0.435 0.664 -0.027 0.017 C(Continent)[T.Americas] 0.0216 0.010 2.131 0.035 0.002 0.042 C(Continent)[T.Asia] 0.0013 0.009 0.140 0.889 -0.016 0.019 C(Continent)[T.Europe] 0.0654 0.010 6.852 0.000 0.047 0.084 C(Continent)[T.Oceania] -0.0284 0.016 -1.734 0.085 -0.061 0.004 Obesity 0.0014 0.001 1.849 0.066 -9.35e-05 0.003 Vegetables 0.0002 0.002 0.121 0.904 -0.003 0.004 Obesity:Vegetables -3.103e-05 8.86e-05 -0.350 0.727 -0.000 0.000 ============================================================================== Omnibus: 5.994 Durbin-Watson: 2.190 Prob(Omnibus): 0.050 Jarque-Bera (JB): 5.778 Skew: 0.363 Prob(JB): 0.0556 Kurtosis: 3.568 Cond. No. 1.09e+03 ============================================================================== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.09e+03. This might indicate that there are strong multicollinearity or other numerical problems.
T.Americas and T.Europe have a p-value that is less than 0.05, which concludes that these continents consume less vegetables which may lead to higher likelihood of obesity. Additionally, higher likelihood of obesity may result in an increased chance of death from COVID-19.
T.Asia and T.Oceania have a p-value that is greater than 0.05, which concludes that these continents consume more vegetables which may decrease the chances of obesity, thus decreasing the chance of death from COVID-19.
Conclusion
After performing regression analysis, hypothesis testing, and exploratory data analysis, we were able to determine whether or not Obesity, Undernourishment, Vegetable consumption, Treenut consumption, and Fruits-Excluding Wine consumption are directly correlated to COVID-19 death rates. The results of our calculations are shown below:
Obesity: DIRECT CORRELATION
Undernourishment: DIRECT CORRELATION
Vegetable Consumption: NO SIGNIFICANT CORRELATION
Treenut Consumption: DIRECT CORRELATION
Fruits-Excluding Wine Consumption: NO SIGNIFICANT CORRELATION
In exploring the regions and continents of the world, we discovered some interesting patterns when observing different features of the datasets including: Covid-19 Deaths, Obesity, Meat, Animal Products, and Vegetables. We found that the highest Covid-19 Death regions were Europe, North America, and South America, the highest Covid-19 Death continents were Europe and the Americas after viewing the initial death rate violin plots. We found that the lowest Covid-19 Death regions were Asia; Australia, Oceania; Central America, Caribbean; Middle East, North Africa, Greater Arabia; and Sub-Saharan Africa, the lowest Covid-19 Death conitnents were Asia, Africa and Oceania. This trend continued as we observed the violin plots for the mentioned features of the dataset related to diet: Meat, Animal Products, and Vegetables. Noticeably, food diets consisting of a higher percentage of Vegetables contributed to healthier diets, contributing to a persistent decrease in deaths between the regions and continents. On the other hand, food diets consisting of a higher percentage of Meat and Animal Products contributed to not as healthy diets, contributing to a persistent increase in deaths between the regions and continents.
As we concluded the results of our calculations, we had already made assumptions about how Obesity, Undernourishment, Vegetable consumption, Treenut consumption, and Fruits-Excluding Wine consumption directly correlates to COVID-19 death rates. It is no surprise that there is a direct correlation between obesity and COVID-19 death rates. People who are obese may have underlying conditions such as type 2 diabetes, high blood pressure, heart disease, strokes, sleep apnea, and many other health problems which poses a higher risk of death if contracted with COVID-19. Additionally, there is also no suprise that there is a direct correlation between undernourishment and COVID-19 death rates. Undernourishment can cause fluid to build up in the abdomen, arms, and legs. Some types of white blood cells decrease, similar to what occurs in people with AIDS. As a result, the immune system is weakened, increasing the risk of infection. However, we are surprised that treenut consumption had a direct correlation to COVID-19 death rates. One would imagine that consuming treenuts would lessen the risks of dying from COVID-19 because of the nutritional benefits treenuts contain. Some of the benefits include unsaturated fats (specifically monosaturated and polysaturated fats) to lower cholesterol levels, omega-3 fatty acids, fiber, vitamin E, plant sterols, and L-arginine. From our calculations provided above, the p-value of treenut consumption is almost greater than 0.05, which concludes that consuming treenuts is healthy for the immune system and provides nutritional benefits, but it is just not as an effective food source to help lessen the risks of death from COVID-19. Subsequently, we are not suprised that consuming vegetables and fruits-excluding wine would decrease the risks of death from COVID-19. It turns out that vegetables are important sources of many nutrients including potassium, dietary fiber, folate (folic acid), vitamin A, and vitamin C. Additionally, fruits are naturally low in fat, sodium, and calories. There is no cholesterol. Fruits are a good source of many essential nutrients, including potassium, dietary fiber, vitamin C, and folic acid (folic acid). A potassium-rich diet helps maintain normal blood pressure. Therefore, we were able to conclude that consuming vegetables and fruits help support the immune system and provide many nutritional benefits to lessen the risks of death from COVID-19. Maintaining a healthier diet that revolves around consuming vegetables and fruits, will help us fight against the COVID-19 virus.
Works Cited
[1] Wikipedia contributors. “Severe Acute Respiratory Syndrome Coronavirus 2.” Wikipedia, 6 Dec. 2021, en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome_coronavirus_2 .
[2] “COVID-19: Who’s at Higher Risk of Serious Symptoms?” Mayo Clinic, 30 Oct. 2021, https://www.mayoclinic.org/diseases-conditions/coronavirus/in-depth/coronavirus-who-is-at-risk/art-20483301 .
[3] “Obesity.” World Health Organization, 9 June 2021, https://www.who.int/news-room/facts-in-pictures/detail/6-facts-on-obesity .
[4] WebMD Editorial Contributors. “Health Benefits of Vegetables.” WebMD, 25 Sept. 2020, www.webmd.com/diet/health-benefits-vegetables#1 .
[5] Fuhrman, Joel. “The Hidden Dangers of Fast and Processed Food.” American Journal of Lifestyle Medicine, vol. 12, no. 5, 2018, pp. 375–81. Crossref, www.ncbi.nlm.nih.gov/pmc/articles/PMC6146358/ .
[6] NHS website. “Meat in Your Diet.” Nhs.Uk, 18 Nov. 2021, www.nhs.uk/live-well/eat-well/meat-nutrition .